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Abstract: The obstacle-avoidance problem of intelligent vehicles is one of the challenges that we face in 
path planning. In order to tackle it, this paper proposes a real-time path planning approach based on 
tentacle algorithm and B-spline curve. In this approach, firstly, some virtual tentacles are built to 
represent the precalculated paths of the ego vehicle at a current speed.  Secondly, it selects the best 
tentacle path among them, which is required to provide a safe driving direction and sampling area for 
generating B-spline paths. When the vehicle drives along the best tentacle path, the B-spline path is 
generated according to the sampling area. Finally, the designed path is formed by segments of the best 
tentacle and a B-spline curve. Compared with other sampling-based path sets approaches, using the 
proposed approach needs shorter reaction time. Simulation and experiment results verify the real-time 
performance and effectiveness of the algorithm of local path planning. 
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1. INTRODUCTION 

Intelligent vehicle is envisaged as a promising technology, 
which can ease the increasing traffic pressure, ensure road 
safety, and reduce the consumption of energy. Although it 
has been developing continuously thanks to the growing 
advance of the artificial intelligence, information and 
communication technology, sensor technique, positioning 
and navigation, etc. (Gonzalez et al. (2016) and Paden et al. 
(2016)). As one of the core technologies for autonomous 
vehicle, path planning is in charge of generating a smooth 
path to pursue driving safety, comfort, and economy. 

Dijkstra algorithm is a classical graph search-based planner 
with its configuration space approximately discretized as cell-
grid space, lattices among others in Li et al. (2009). The 
subsequent improvements of this algorithm contain A-star 
(A*) in Kammel et al. (2008) and Likhachev et al. (2009), the 
dynamic A-star (D*)(Stentz(1994) and Ferguson et al. 
(2006)), the anytime repairing A-star (ARA*) in Daniel et al. 
(2010) and the anytime dynamic A-star (AD*) in Likhachev 
et al. (2008). However, the paths obtained from the 
algorithms above are curvature discontinuous, and it is 
difficult for them to be directly followed by vehicles. Taking  
vehicle dynamics, the presence of the static and dynamic 
obstacles, and traffic rules into account, the two main 
categories of path planning are mainly used in recent years: 
optimization and sampling-based approaches (Katrakazas et 
al. (2015)).  

Geometric Curve optimization and Model Predictive Control 

(MPC) are commonly used optimization-based approaches. 

In geometric curve optimization, a single curve path(e.g. 

splines, Bezier curve, clothoid, polynomials and etc.) 

optimization is performed in Delsart et al. (2009). However, 

such method is essentially a kind of high-dimensional 

optimization problem with multiple nonlinear constraints, 

which requires a number of resources to find the right 

solution.   

At the same time, the Rapidly-exploring Random Trees 

(RRT) and its derivative algorithms are representative 

sampling approaches in Jayasree et al. (2017). These 

sampling-based approaches could produce a valid path by 

extending nodes in a continuous space until the target 

position is reached, but these trajectories are discontinuous 

and not smooth enough, with a relatively long planning 

horizon. Taking the continuity of path curvature into 

consideration, the interpolating curves are widely used in the 

sampling-based approaches. In Li et al.(2019), the path set 

are generated through sampling the target set via offsetting 

along the reference path. 

The tentacle algorithm is another commonly used methods 

which is firstly applied in the DARPA Urban Challenge 2007 

(Hundelshausen et al. (2008)). The Tentacles approach 

imitates the behavior of insects that uses their antennae to 

detect, and then avoid obstacles. For intelligent vehicles, all 

the tentacles are generated as candidate paths according to 

their current speed. Due to high-speed calculation, the 
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tentacle algorithm and B-spline curve. In this approach, firstly, some virtual tentacles are built to 
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tentacle algorithm is assumed to be a quick-reactive method 

in Alia et al. (2015). In Hundelshausen et al. (2008), the 

shape of tentacles is circular, leading to that the tentacle 

curvature is not well-suit to the current vehicle steering angle. 

Clothoids and some other shapes were used to build tentacle 

paths in Akmandor et al. (2020) and Mouhagir et al. (2020), 

which consider the current steering angle. However, every 

tentacle path needs to be planned very frequently, which 

needs to occupy much computing resource all the time. 

Besides, the vehicle needs to be constantly switched from an 

old tentacle path to a new one, which is not conducive to its 

tracking. 

In this paper, we propose a real-time approach for path 
planning of on-road intelligent vehicles to efficiently generate 
a drivable path. In order to keep the continuity of curvature, 
cubic B-spline curve is adopted to generating a smooth path. 
And it is convenient to adjust parametric basic points of the 
spline curve for controlling the curvature extremum of 
kinematic constraints on vehicle (Zeng et al. (2019a)). We 
use the tentacle algorithm to quickly decide the driving 
direction of the vehicle, and the best tentacle returning to a 
drivable area. When the vehicle is driving in the safest 
direction, sampling based on the drivable area to generate a 
completely safe, smooth and comfortable path by using the 
B-spline curves. Compared with other sampling-based path 
set approaches (Zeng et al. (2019b)), the proposed approach 
shows better real-time performance, which has a lower 
computational cost and shorter run-time. 

2. TENTACLE ALGORITHM 

2.1 Environment Information 

A 2D occupancy grid map with 501×151 cells is coined with 
the size of each cell being 0.1 m×0.1 m. Therefore, the range 
of the vehicle’s known surrounding environment in physical 
space is 50.1 m×15.1 m. The center coordinate of the vehicle 
is (400,75). The distance between the center of vehicle and 
the front end of the grid map is 40 m, and the rear end of the 
grid map is 10.1 m. The intelligent vehicle receives the 
information of obstacles and the features of the road from 
LIDAR. The point cloud data from LIDAR is converted to 
binary values in the occupancy grid map. If the cell value is 
1, it means there is an obstacle, or if it is 0, there is no 
obstacle. 

2.2 Tentacle Generation 

On the occupancy grid map, a set of vehicle-centered 
tentacles are generated as possible paths. Tentacles are 
generated off-line to ensure the calculating speed of the 
planning system. In this work, the applicable scenario is 
obstacle avoidance or lane change of structured roads, thus 
the initial steering angle of the vehicle is small. In order to 
make the calculation as small as possible and make the 
reaction time of obstacle avoidance faster, we choose a circle 
as the shape of the tentacles. They are used for both 
perception and motion execution. Speed is divided into 20 
ranges, each of which is 2 km/h and the velocity for speed set 
j is computed by: 

 0 0( )i mv v q v v    

where v0=1km/h is the speed of the minimum speed set and 
vm=40 km/h is the maximum speed. When vi≤v≤vi+1, speed set 
j = i, vj =vi, and q=j/20 is the speed level factor. The vehicle's 
speed does not change on each tentacle path. Refer to [15], for 
each speed set, 81 tentacles are generated, which start from 
the center of gravity of the vehicle. The radius rk of the kth 
tentacle in a set is given by: 
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where p = 1.2 is the correction factor and the initial radius  
of speed set j is: 
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where l is the basic length of tentacles, and defined as: 

 210 60*l q  

The real length lk of each tentacle is given by: 
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In this way, the maximum length of the tentacle will not 
exceed the limit of the occupancy grid map. Besides, when 
k=40, both rk and Rj are equal to ∞, which means that the 

vehicle can only drive straightly. After the generation of 
tentacles, they are discretized into path points for subsequent 
work. The generated tentacles are shown in Fig.1. 

 

Figure 1. Tentacle Paths for speed set j = 10 

2.3 Tentacle Selection 

The tentacle algorithm generates and selects the tentacle 
frequently, which requires much detection and smoothing 
work. In this work, we only use the selected tentacle to 
provide the driving direction for obstacle avoidance, and the 
sampling area for target points of B-spline curve. In order to 
make the obstacle avoidance reaction as quick as possible, 
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2.3 Tentacle Selection 

The tentacle algorithm generates and selects the tentacle 
frequently, which requires much detection and smoothing 
work. In this work, we only use the selected tentacle to 
provide the driving direction for obstacle avoidance, and the 
sampling area for target points of B-spline curve. In order to 
make the obstacle avoidance reaction as quick as possible, 

only the safety distance of the tentacles is used as the 
selection criterion.  

The method of collision detection according to the 
environment map and vehicle configuration is widely used. 
As is shown in Fig.2, the vehicle configuration is constructed 
by three circles to detect whether there will be a collision 
occurring in the grid map. 

h

 

Fig. 2. Vehicle configuration 

The size of parameters is designed as: 

    2 2
( 2 ) / 2 / 2r l d w                         (6)             

The value h = 2r is chosen as a safe width and d = l/3. In the 
occupancy grid map, starting from the vehicle, the detection 
area is generated by expanding with the safe width along the 
path point on each tentacle. The geometric definition of this 
area is illustrated in Fig. 3.  

Safe width

Safe distance

 Detection area

 

Figure 3. Detection area and safe width. 

Once an obstacle is detected on the front reference road, 
collision detection is performed on the detection area of each 
tentacle through vehicle configuration, if the grid cell in the 
vehicle configuration with obstacle (road edge points are also 
seen as obstacles), the length value of the corresponding 
tentacle point is recorded as the safe distance lk_obs of this 
tentacle. The tentacle with the maximum lk_obs is regarded as 
the best tentacle. In order to reduce the number of collision 
detections as much as possible, the spatial distance between 
two adjacent detection points is set to half of the distance from 
the rear axle to the front of the vehicle. It will be selected for 
execution and the execution time is te second. This time te can 
be set according to the speed set as, 

 0.8 2et q   

As the speed increases, the time to travel along the best 
tentacles will also be appropriately extended to ensure safety. 
The section of this path is called executing tentacle.  It is 
assumed that the speed of vehicle remains unchanged on the 

executing tentacle path. If the lk_obs of the best tentacle is less 
than the minimum safe distance, then the vehicle will slow 
down in the direction of this tentacles and replan at the next 
moment. 

3. B-SPLINE PATH BASED ON THE BEST TENTACLE 

After generating and selecting tentacle paths, the vehicle will 
drive in the direction of the tentacles for te seconds. During 
this period, a real-time path planning approach for on-road 
intelligent vehicle is used to efficiently generate a drivable 
path. In order to keep the continuity of curvature, cubic B-
spline curve is adopted to generating a smooth path. And it is 
convenient to adjust parametric basic points of the spline 
curve for controlling the curvature extremum of kinematic 
constraints on vehicle.  

B-spline curve is a linear combination of the B-spline basis 
function and control point. For a (n+1) control 
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degree B-spline curve can be defined as Equation (8) referring 
to Elbanhawi et al. (2015), 
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computed using deBox-Cox equations like Equation (9), 
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In order to ensure the curvature of the path continuous, at least 
cubic B-spline curves are selected for the path planning. An 
example of a cubic B-spline curve with five control points is 
shown in Fig.4. 

 

Figure 4. Cubic B-spline curve with five control points 

3.1 Control Segment Generation 

As shown in Fig. 5, A1, O and B1 are the control point of a 
cubic B-spline curve. A2 and B2 are the midpoints of A1O and 
OB1. 
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Figure 5. Control segment model 

It is assumed that the length of A1O is equal to the length of 
OB1. Then, the control points can be defined as Equation (10) 
referring to Li et al. (2020), 
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If we set the node vector as [0,0,0,0,0,0.5,1,1,1,1], the 
expression of the cubic B-spline is respectively described by, 
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and the curvature of the curve is, 
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According to the equation (11) and (12), the curvature 
expression can be derived as, 
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The length of control segment could be used to form the 
object function of path planning. By selecting the length and 
the included angle of the control line segment, a B-spline 
curve for obstacle avoidance is generated. For the purpose of 
better integrating with the previous path generated by the 
tentacle algorithm, we choose 2 control segments to generate 
subsequent paths. As shown in Fig. 6, Xstart is the starting 
point of the executing tentacle path, X0 is the end point. X0, 
X1, X2 and X3 are four control points for B-spline curve, while 
X0 is the start point and X3 is the end. 
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1 is the difference between the heading angle of X0 and X2. 
0 is the heading angle of X0. After completing the obstacle 
avoidance path, the direction of the vehicle should be parallel 
to the reference path. Therefore, the relationship between g 
and 0 is, 
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Where,  is the heading angle of the target point on the 
reference path. The supplementary constraint equations are, 
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3.2 B-spline path generation  

After generating the segments of the control line, a B-
spline path can be generated. We generate a path set and 
through select the curve with the highest security and the best 
path curvature.  

On the selected tentacle path, starting from the path point 
corresponding to the target point on the reference road, 
picking points in the lateral direction of the reference road. 
And then generating the path set. The way of picking target 
points is shown in Fig. 7. The blue curve is the reference path, 
the red curve is the best selected tentacle. G is the reference 
target point, which is the point on the reference road ahead 
where the obstacle is detected The sampling distance d of the 
target points can be changed. ( , )

n nn G GG x y is the coordinate of 
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Based on the best tentacle path, we only need to sample the 
target point near in the sampling area. The target points of 
sampling are greatly reduced and the range of sampling is 
more accurate. Setting d to 0.2 m and the sampling points to 6, 
then the coverage range is [-0.8m, 0.8m]. The collision 
detection method for path set is the same as the tentacle track 
obstacle detection method in the previous chapter. The path 
set is selected based on the length, the sum of the squares of 
the curvature, the sum of the squares of the curvature 
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Figure 5. Control segment model 
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1 is the difference between the heading angle of X0 and X2. 
0 is the heading angle of X0. After completing the obstacle 
avoidance path, the direction of the vehicle should be parallel 
to the reference path. Therefore, the relationship between g 
and 0 is, 
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3.2 B-spline path generation  

After generating the segments of the control line, a B-
spline path can be generated. We generate a path set and 
through select the curve with the highest security and the best 
path curvature.  

On the selected tentacle path, starting from the path point 
corresponding to the target point on the reference road, 
picking points in the lateral direction of the reference road. 
And then generating the path set. The way of picking target 
points is shown in Fig. 7. The blue curve is the reference path, 
the red curve is the best selected tentacle. G is the reference 
target point, which is the point on the reference road ahead 
where the obstacle is detected The sampling distance d of the 
target points can be changed. ( , )

n nn G GG x y is the coordinate of 

the target points obtained from the sampling, 

sin
, [ , ]

cos





 
 

 

n

n

G G g

G G g

x x nd
n i i

y y nd


Based on the best tentacle path, we only need to sample the 
target point near in the sampling area. The target points of 
sampling are greatly reduced and the range of sampling is 
more accurate. Setting d to 0.2 m and the sampling points to 6, 
then the coverage range is [-0.8m, 0.8m]. The collision 
detection method for path set is the same as the tentacle track 
obstacle detection method in the previous chapter. The path 
set is selected based on the length, the sum of the squares of 
the curvature, the sum of the squares of the curvature 

derivatives, and the distance between the target point and the 
reference path. 

 

  

Figure 7. Sampling of target points 

The selected B-spline path and the tentacle path generated 
before are combined to form the designed obstacle avoidance 
path. At this moment, the vehicle has already begun to 
execute the previously selected tentacle path. After driving on 
the tentacles, the vehicle will continue to travel along the B-
spline path to complete obstacle avoidance. 

4.  SIMULATION AND EXPERIMENT RESULTS 

4.1 Simulation results 

In order to verify the effectiveness of the planning and 
control algorithms above, the simulation and experiment are 
designed respectively. Simulations were conducted in the 
C++ 11/Linux and executed on a Jetson TX2 that runs at 
HMP Dual Denver 2/2 MB L2 + Quad ARM® A57/2 MB L2. 
Then, we conducted several experiments based on a modified 
electric intelligent vehicle platform in a structured road, to 
verify the practicability of our algorithm. 

The simulation is conducted in a successive lane-changing 
scenario to avoid static obstacles. The length of the vehicle is 
3.6 m and the width is 1.6 m. The width of each lane is 3.5 m.  

The scenario is on a two-lane road with one obstacle in front 
of the vehicle. The vehicle generates a set of tentacle 
trajectories based on the current speed set off-line. In this 
scenario, the velocity of the vehicle is 10km/h, thus the speed 
set j is 5. The allowed maximum curvature of our test car is 
set to 0.25 m-1. When the system detects obstacles within a 
certain distance and determines that obstacle avoidance is 
required, obstacle detection and selection are performed on 
the tentacles. As shown in Fig. 8, the white rectangle is the 
initial position when the vehicle starts to avoid obstacles, and 
the black rectangle is the obstacle. (a) is the generated tentacle 
paths for obstacle detection, (b) is the best tentacle; (c) and (d) 

demonstrate the process of generating B-spline curve based on 
the tentacle path. In (c), target points are picked based on the 
best tentacle to generate a path set. The blue curves are the 
generated B-spline set and the red curve is the executed 
tentacle path. (d) is the selected optimal path. Fig.9 
demonstrate the curvature of B-spline curve, from which it 
can be testified that the curve constructed based on B-spline 
has continuous curvature and limited curvature maximum 
(absolute value). The curvature has the maximum of 
0.02865/m and meet the limitation for motion.  

 
        (a)                     (b)                    (c)                    (d) 

Figure 8. Generated path based on tentacles and B-spline. 

 

Figure 9. Curvature of B-spline curve. 

As shown in Fig.10, the mean reaction time for obstacle 
avoidance, namely the mean duration for the best tentacle 
path selection is only 4.8914ms. And as illustrated in Fig.11, 
the duration has the probability of 15% to exceed 10ms and 
there is 59% probability to generate path less than 3ms. 
Shown in Fig.12 and Fig.13 are the calculation time for 
generating a B-spline path with the sampling area provided 
by the best tentacle. The mean duration for B-spline path 
generation is only 9.9033ms. During the execution of the best 
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tentacle path, B-spline curve has sufficient time to be 
calculated and generated. 

 

Figure 10. Reaction time for obstacle avoidance. 

 

Figure 11. The distribution of response time for obstacle 

avoidance. 

 

Figure 12. Duration for B-spline path calculation. 

 

Figure 13. Duration distribution for B-spline path calculation. 

Path planning approach in Zeng et al. (2019a) is similar with 
this work, but for Zeng and his colleagues, B-spline curves 
are generated by picking a series of target points in the lateral 
direction of the reference road. Its Response time, namely the 
generation time for obstacle avoidance path using B-spline 
curve is shown in Figure 14. The mean duration is 59.1ms, 
and there are plenty of times over 100ms, even up to 250ms. 
And as illustrated in Fig.15, the generating duration has the 
probability of 9% to exceed 100ms. Compared with them, the 
approach proposed in this paper greatly accelerates the 
response speed of obstacle avoidance, and its average 
response time is reduced by about 91.7%. At the same time,  
the calculation time for generating B-spline trajectories is 
also greatly reduced, which further reduces the computing 
resources required by the planning algorithm. 

 

Figure 14. Reaction time for obstacle avoidance in Zeng et al. 
(2019a) 
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Figure 15. Reaction time distribution for obstacle avoidance 
in Zeng et al. (2019a). 

5.2 Experiment results 

To evaluate the developed algorithm, a modified vehicle 
based on E50 electro car is used as our verification platform 
as shown in Fig. 16, which was equipped with a centralized 
drive motor, a steering motor, an electronically controlled 
hydraulic brake system, an industrial computer and a vehicle 
control unit. A Pandar 40AC LIDAR, which perceives 
environment and generates occupancy grid map, is fixed in 
the roof of vehicle. The exact position of the vehicle is 
obtained by RTK and IMU.  

Fig. 17 and Fig.18 are windows of planner in two obstacle 
avoidance scenarios. From left to right is 1) environmental 
point cloud map; 2) reference map: in which the green curves 
are the tentacle set planned at the current speed, and the blue 
line is the reference road; 3) the planned paths map: including 
the reference road, the selected tentacle for sampling target 
points, red B-spline path set generated based on the best 
tentacles; 4) tracking path map: including the final designed 
path for vehicle tracking. The real-time speed is kept about 
10km/h in each scenario. 

 

Figure 16. The modified vehicle platform for experiment. 

 
Figure 17. The planner window in scenario 1. 

 

 
Figure 18. The planner window in scenario 2. 

 

 
Figure 19. The planner window with close obstacles. 
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Fig. 19 shows the scenario that the vehicle detects a close 
obstacle. In this scenario, the distance between the vehicle 
and the obstacle is not enough to use the B-spline curve to 
generate a smooth path. Therefore, the vehicle will follow the 
executing tentacle path and re-plan it at the next planning 
cycle. Under each experimental situation, the reaction time 
for obstacles avoidance is within 10ms. 

5. CONCLUSIONS 

In this work, a real-time local path planning approach for 
intelligent vehicle is proposed, which combines the tentacle 
algorithm and B-spline approach. The tentacle algorithm 
provides a safe driving direction for the vehicle quickly and 
generates a sampling reference area for B-spline curves. 
Thus, the target points of the B-spline curve can be sampled 
more easily and efficiently. During the vehicle driving along 
the tentacles path, the B-spline path is generated and it does 
not need to take any reaction time. By combining tentacles 
with B-sample curve, the generated path is safe and smooth. 
The approach was tested in multiple obstacle avoidance 
scenarios on structure road. Simulation and experimental 
results show that the proposed planning approach has 
extremely fast obstacle avoidance response. Compared with 
some sampling-based path set approaches, our approach has 
better real-time performance. In the future, we plan to 
consider the impact of the uncertainty of the environmental 
map on our algorithm. 
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