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Convergent Harmonious Reinforcement
Learning—Lane Changing in a More

Traffic Friendly Way
Ruolin Yang , Zhuoren Li , Graduate Student Member, IEEE, Bo Leng , Lu Xiong , and Xin Xia

Abstract—Lane-change is a common maneuver. However, com-
pletely egocentric lane-changing behavior may increase potential
driving risks and cause oscillations in the movement of sur-
rounding vehicles, referred to as disharmony. To improve the
overall safety and efficiency of both ego vehicle and their
surroundings, this paper proposes a convergent harmonious rein-
forcement learning (CHRL) approach to generate harmonious
lane-changing strategies. It introduces a game-based model to
measure the overall harmony cost. On this basis, a prosocial
critic network is established to guide the policy toward harmony
by decreasing the harmony cost. Meanwhile, CHRL identifies
and penalizes discordant behaviors that may lead to high risk,
accelerating the RL agent’s learning of harmonious driving
strategies through expert demonstrations of the game model.
Simulation and real-data tests validate that CHRL, compared
to other lane-change methods and human drivers, improves the
overall harmony of lane changes for autonomous vehicles.

Index Terms—Autonomous vehicles, reinforcement learning,
lane change, harmony, game theory.

I. INTRODUCTION

LANE change is a prevalent and primary driving maneu-
ver, but accidents occurring during lane changes account

for over 10% of all traffic accidents [1], [2]. Additionally,
poorly executed lane changes can induce traffic conges-
tion [2], [3] that further catalyzes accident risk [4], [5]. A
recent study attributes over 90% of these incidents to human
factors [6].

Autonomous vehicles (AVs) have tremendous potential to
reduce traffic accidents and improve traffic efficiency [7].
However, they face complex lane-change scenarios involving
human drivers whose maneuvers cannot be accurately mod-
eled. In such situations, conventional rule-based AV algorithms
often lack the adaptability required for flexible lane changes.
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Fig. 1. Disharmonious lane change brings the risk of collision.

To enhance AV adaptability in complex scenarios, reinforce-
ment learning (RL) methods have emerged with demonstrated
capability to execute lane changes across dynamic environ-
ments [8], [9], [10].

However, existing RL’s reward-oriented structure can gen-
erate “disharmonious” maneuvers, where vehicles prioritize
individual rewards over collective traffic flow stability. Such
maneuvers manifest as erratic lane changes that disrupt sur-
rounding vehicles within the lane change window (LCW), as
depicted in Fig. 1. While potentially avoiding immediate col-
lisions (satisfying basic safety), these maneuvers may induce
higher speed deviation and volatility across the LCW, creating
unstable traffic conditions. Research [11] confirms that traffic
flow speed uniformity directly correlates with overall safety,
with less uniform flows exhibiting heightened accident risk
[4], [12], [13].

In this paper, we define “harmony” in lane changing as
the collective stability of traffic flow, characterized by gradual
acceleration and deceleration patterns that maintain consistent
vehicular speed profiles across all LCW participants [11]. This
harmony differs fundamentally from basic safety (collision
avoidance): safety concerns immediate crash prevention, while
harmony addresses broader traffic stability and long-term col-
lective safety. A technically “safe” maneuver can still disrupt
flow harmony, creating ripple effects that compromise system-
wide efficiency and elevate collective risk.

Current approaches to lane-changing face three fundamental
limitations in addressing harmony optimization. First, safety-
oriented methods [14], [15], [16], [17] focus primarily on
collision avoidance without adequately considering the broader
impact on traffic flow stability and coordination. Second, while
Game Theory (GT) approaches [18], [19], [20], [21], [22]
attempt to model vehicle interactions, they either impose rigid
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interaction structures or become computationally intractable
in realistic scenarios, failing to capture the dynamic, adaptive
nature of harmonious traffic flow. Third, existing RL frame-
works [23], [24] typically employ single-critic architectures
that combine conflicting objectives into unified reward sig-
nals, creating reward confusion that fundamentally limits their
capacity to develop truly harmonious maneuvers.

These limitations reveal a critical research gap: despite
harmony being recognized as crucial for traffic stability,
current methodologies lack the architectural design, inter-
action modeling, and evaluation mechanisms required to
effectively promote and measure harmonious lane-changing
maneuvers. Existing approaches treat harmony, if consid-
ered at all, as a secondary constraint rather than a primary
optimization target, limiting their effectiveness in developing
lane change strategies that actively contribute to traffic flow
stability.

Our work introduces Convergent Harmony Reinforcement
Learning (CHRL) to address these limitations. The key con-
tributions of our approach include:

(1) Dual Critics Architecture in CHRL: We present
dual critics comprising an EV-related critic (E-Critic)
and a Prosocial critic (P-Critic). This design sepa-
rates harmony assessment from performance evaluation,
preventing reward confusion inherent in conventional
single-critic systems and elevating traffic harmony
from a secondary constraint to a primary optimiza-
tion objective, enabling convergence toward harmonious
lane-change maneuvers.

(2) Policy Generation with Harmony Guidance in
CHRL: We develop a computationally efficient Incom-
plete Information Static Game (IISG) model for realistic
traffic interaction modeling. This innovation serves
two crucial functions: (1) generating expert demonstra-
tions that accelerate policy learning toward harmonious
maneuvers; and (2) providing reference solutions for
real-time harmony-preserving action correction. Our
approach captures the essence of traffic interactions
while remaining practical for real-time applications,
enabling policies to balance individual objectives with
collective traffic stability.

(3) Systematic Harmony Evaluation: We establish quan-
titative metrics for lane-changing harmony assessment
and conduct extensive comparative testing across mul-
tiple benchmarks, including human drivers, rule-based
models, and existing RL approaches. Our experi-
mental validation in both simulated and real-world
traffic scenarios demonstrates CHRL’s effectiveness in
enhancing traffic harmony while maintaining operational
efficiency.

The rest of the article is organized as follows: Section II
analyzes related work in lane-change harmony. Section III
describes the CHRL framework construction. Sections IV-V
elaborate on the dual-critics implementation and harmony-
guided policy generation. Section VI analyzes experimental
results, and Section VII summarizes the harmony improve-
ments achieved through CHRL.

II. RELATED WORK

In autonomous lane-changing research, addressing the har-
mony issue between the ego vehicle (EV) and surrounding
vehicles (SVs) remains a significant challenge. This section
reviews existing approaches across three critical dimensions:
safety-oriented constraints, interactive modeling, and architec-
tural design limitations.

Researchers have primarily approached lane-change har-
mony through kinematic safety constraints. Recent works [14],
[15] implemented offline safety metrics such as Time-to-
Collision (TTC) and Time Difference to Merging (TDTM) to
restrict RL training within safety boundaries. Zhang et al. [16]
introduced an Implicit Safe Set Algorithm (ISSA) that applies
post-decision constraints through hierarchical control–a struc-
ture widely adopted for ensuring operational safety [17].
Additionally, several studies incorporated safety constraints
directly into critic networks: Bharadhwaj et al. [25]
developed action resampling mechanisms when safety thresh-
olds were exceeded, Wen et al. [26] constructed safety
networks that conditioned policy updates on both gradient
descent and safety criteria, while Ma et al. [27] redesigned
critic loss functions to promote safer kinematic states. How-
ever, while these approaches enhance safety, they insufficiently
address the complex interactive dynamics between vehicles
that are fundamental to achieving truly harmonious lane
changes.

Recognizing the limitations of purely safety-focused meth-
ods, researchers have incorporated interactive awareness
through GT models. Multiple studies [18], [19], [20] applied
Stackelberg game frameworks to establish leader-follower
relationships between EVs and SVs during lane changes.
Despite demonstrating effectiveness in controlled environ-
ments, these approaches face significant constraints in complex
traffic scenarios where leader-follower distinctions become
ambiguous and computational demands for multi-vehicle game
modeling grow prohibitively expensive. Yang et al. [21] uti-
lized GT as a constraint mechanism to guide decision network
convergence, yet omitted game cost factors during evaluation,
potentially restricting the exploration of optimal interactive
strategies. Similarly, Karimi et al. [22] developed a hybrid
approach that initializes decisions with GT before refining
through RL iterations, but without guaranteeing strategy con-
vergence or accurately reflecting real-world traffic behavior.
Our CHRL framework addresses these limitations by integrat-
ing an Incomplete Information Stochastic Game (IISG) model
that balances decision accuracy with computational efficiency,
enabling more realistic harmony-oriented interactions.

A critical yet underexplored limitation in existing RL
frameworks concerns architectural design for multi-objective
optimization. Conventional single-critic RL frameworks inte-
grate diverse reward components–including safety, efficiency,
and social factors–into unified evaluation modules [23]. This
architectural choice frequently results in reward inflation and
constrained policy exploration [24], as conflicting objectives
compete within the same evaluation space. Recent stud-
ies in autonomous driving RL [13], [28] demonstrate that
such reward confusion particularly impacts harmony-related
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objectives, which require nuanced evaluation separate from
performance-oriented rewards. The fundamental issue stems
from treating harmony as a secondary constraint rather than
a primary optimization target, limiting the agent’s ability to
develop truly cooperative behaviors. The proposed CHRL
framework addresses this architectural limitation through a
novel dual-critic design that fundamentally transforms how
interaction harmony is evaluated and optimized.

Unlike previous approaches that treat harmony as a
secondary consideration or safety constraint, our CHRL frame-
work elevates harmony to a first-order design principle through
three key innovations: (1) explicit modeling of vehicle interac-
tions using IISG that captures realistic incomplete information
scenarios in traffic; (2) architectural separation of harmony
evaluation through the dedicated P-Critic, preventing reward
confusion and enabling focused harmony optimization; and
(3) integrated perception-action mechanisms that adaptively
balance individual operational objectives with collective traffic
harmony. These innovations collectively enable the develop-
ment of lane-changing policies that not only satisfy safety
requirements but actively contribute to smoother, more coop-
erative traffic flow–addressing the fundamental limitations
identified in existing safety-constrained, game-theoretic, and
single-critic approaches.

III. CONVERGENT HARMONIOUS RL IN
LANE-CHANGE DECISION

A. Problem Formulation and Key Definitions

The problem is defined as a lane-change decision-making
problem in the highway scenario, with the following key
definitions:

(1) Lane change window (LCW): the range of the preceding
80 meters and the following 20 meters of the EV;

(2) Surrounding vehicles (SVs): the vehicles that are directly
affected by the EV, including the preceding and follow-
ing vehicles in the EV’s current and target lanes within
LCW.

In the described target problem, the EV operates on the
highway with a decision frequency of once per second and a
trajectory planning frequency of 15 times per second.

B. Construction of CHRL Lane-Change System

We model CHRL for lane-change maneuver based on the
Markov Decision Process (MDP) [29]. In addition to the
main modeling components of State space S, Action space A,
Reward space R, and discount factor (γ) for reward updates.
Considering that lane changing only lasts for a while, the MDP
model adds the decision horizon factor (h) and only considers
the period during the lane change of the EV. So, the model
can be represented as 〈S,A,R, γ, h〉.

Fig. 2 shows the process of CHRL to make harmonious lane
change maneuvers. After observing the current environment,
the actor network generates RL Action which is monitored by
the harmony assessment module. If any RL Action is assessed
as a danger, the harmony guidance module is activated to guide
it to a Game Action with more harmony. During training,
the dual critics are used to update the lane-change policy of

Fig. 2. The framework of convergent harmony reinforcement learning
for lane-change trajectory decision. orange parts belong to the convergent
harmony mechanism.

the actor network based on EV-related reward and harmony-
related evaluation simultaneously.

We designed key factors including the internal RL net-
work structure, observation space, action space, and reward
mechanism.

1) RL Network Structure: The architecture of the CHRL
is depicted in Fig. 2, comprising one actor network and two
critic networks. The Actor network’s input layer processes the
flattened observation space vector and has an output layer
dimensioned to match the action space. The dual critics,
mirroring each other’s structure, accept action-state pairs from
their respective experience pools as inputs and provide policy
evaluations as outputs. Both types of networks feature interme-
diate connectivity through two 256× 1 fully connected layers
transitioning from input to output.

During training, the actor network produces an action ARL,
which is subsequently evaluated against a defined disharmony
threshold. Actions exceeding this threshold are guided towards
harmony using the harmonious action AGT, derived from the
IISG model. Once the action is executed, the actor network
undergoes updates based on the EV-related reward QR and the
harmony-related value QH .

2) Observation Space: The observation space serves as the
input to the CHRL decision system. In our framework, the
observation space is represented by a 7 × 5 matrix, which
includes information on 7 vehicles: 6 SVs from different
orientations within LCW, and the EV. Note that we model
interactions solely between the ego vehicle and immediately
adjacent vehicles, which excludes the indirect effects from
vehicles in non-adjacent lanes. Subsequent research aims to
refine this by developing a more elaborate model of multi-
vehicle game-theoretic interaction chains. This advancement
will facilitate a more holistic understanding of the interac-
tions between the ego vehicle and vehicles situated beyond
its immediate vicinity. Each vehicle is associated with an
observation information vector, which can be denoted as:
S = [S i] , i = 1, 2, . . . 7,where S i =

�
pi, si, li, vsi , vli

�
, in which

’i’ refers to the i-th vehicle, pi serves as an existence flag in
the context of vehicle observation, and it is set to 0 when
an observed vehicle falls outside of the observation range
or if there is no vehicle present. si, li indicates the relative
longitudinal and lateral distance to ego vehicle, and the vsi , vli
are correspondingly differential terms of distance.
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3) Action Space: The action space ARL consists of three
continuous variables: xd, a, and lanetar.

The term lanetar represents a discrete target lane-change
action from the set (left, half-left, keep, half-right, right).
It should be noted that the ‘keep’ action is understood as
a commitment to the prevailing action. Specifically, if the
vehicle is proceeding straight, ‘keep’ translates to maintaining
this straight course; however, once a lane change is triggered,
‘keep’ then denotes the sustained execution of this ongoing
lane change. To incentivize the agent to investigate partial
lane-change maneuvers and optimize opportunities for lane
changes, we introduce a “half-lane” option into the action
space.
• xd denotes the end position of the lane change on the tar-

get lane generated from action space. xd only determines
the lateral trajectory shape and is decoupled from the
longitudinal speed, primarily influencing the smoothness
of the EV’s lane change. To better approximate real-world
conditions, the range of xd is set to [10m, 45m] along the
x-axis relative to the current position of the EV.

• a represents the longitudinal acceleration, ranging from
[−3,3]m/s2.

• lanetar means a discrete target action from (left,half-left,
keep,half-right, right), we have introduced a half-lane
option as a choice of actions to encourage the agent to
explore possibilities in half-lane probing and seizing lane-
change opportunities. A step function outlined in equation
(1), is employed to map the continuous output acon of the
CHRL model onto one of the discrete actions lanetar. As
a constraint, when a vehicle is situated in the leftmost
(or rightmost) lane, any action from lanetar indicating a
“left” (“right”) lane change is automatically converted to
“keep” during its application.

lanetar =

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

left, 0.0 ≤ acon ≤ 0.5
half-left, 0.5 < acon ≤ 1.0
keep, 1.0 < acon < 2.0
half-right, 2.0 ≤ acon < 2.5
right, 2.5 ≤ acon ≤ 3.0

(1)

Besides, if the vehicle goes off-road, the current episode
will be terminated, and a penalty will be applied.

4) Reward: The reward setting is divided into three com-
ponents. Firstly, the safety and efficiency of the ego vehicle;
second, the lane-change exploration. Lastly, a penalty is set
for dangerous actions. The detailed equation is as follows:

(1) ego vehicle reward
(a) safety reward

Rs = ∆sel × rTTC + flagc × pc (2)

The safety reward includes a constant weight rTTC of the time-
to-collision (TTC) reward multiplied by the distance between
the ego vehicle and the leading vehicle ∆sel. A negative
collision penalty weight pc is applied if a collision happens.

(b) high-speed reward

Re = re|vcur − vtar | (3)

where re is a constant weight of efficiency reward, vcur, vtar are
current speed and target speed respectively. The reward speed
interval is [10,30]m/s.

(c) fluctuation penalty

R f =

(
deg f × p f , n f > 3
0, n f ≤ 3

(4)

where deg f is the ratio of inconsistent actions to the historical
actions in the past several seconds, p f is a constant weight
of fluctuation penalty. Considering the comfort of driving, the
EV will be fined if it changes the target lane frequently.

(2) opportunity exploration reward

Rex =

(
rex, tex ≤ 1.5
0, tex > 1.5

(5)

An exploration reward weight rex is given for actions that
explored a half-lane action and completed a lane change
through exploration, and the exploration time was limited to
1.5 seconds.

(3) danger penalty

Rd =

(
degd × pd, act = dangerous
0, act = safe

(6)

where degd represents the degree of deviation from the ref-
erence harmonious action, the reference harmonious action is
determined by the harmony guidance module. And pd refers
to a constant disharmony penalty weight.

All reward (or penalty) weights used in the reward function
are set in the range (0, 1). The reward (or penalty) values will
be normalized to R′s,R

′
e,R

′
f ,R

′
ex,R

′
d, based on their maximum

and minimum values to remove the influence of their scale.
The final comprehensive reward is the sum of these normalized
rewards:

R′ = Rs
′ + Re

′ + R f
′ + Rex

′ + Rd
′ (7)

The comprehensive reward R′ can generally be used to criticize
a lane change decision.

5) Parameterized Trajectory Generation: Our method
yields a trajectory as output, which is subsequently projected
onto the Frenet [30] coordinate system and discretized into
longitudinal and lateral coordinates (s, l) along the lane cen-
terline. This representation facilitates trajectory tracking using
the Stanley control algorithm [31] to update the environment
state.

A coefficient dictionary is included specifically for gen-
erating 5th-order polynomial lane-change trajectories, as
equation (8) shows.

y(x) = a5x5 + a4x4 + a3x3 + a2x2 + a1x + a0

s.t. y (x0) , y′ (x0) , y′′ (x0) = finit (v0, ω0, ϕ0)

y (xd) , y′ (xd) , y′′ (xd) = fend (vd, ωd, ϕd) (8)

The variable x in equation (8) represents the lane change
endpoint xd during calculation. We can use the starting and
ending vehicle speeds v0, vd, steering speeds ω0, ωd, and head-
ing angles ϕ0, ϕd to establish the initialization and endpoint
boundary conditions of the lane change trajectory and map
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the lane change endpoint xd to the coefficients of a fifth-order
polynomial.

This dictionary stores the mapping information between the
trajectory and the output action of the network. By providing
the endpoint xd, the dictionary gives a unique set of coefficients
corresponding to the lane-change trajectory, which is then
transformed into the Frenet coordinate system for execution.

IV. DUAL CRITICS IN CHRL

A. The Structure of Dual Critics

In dual critics, the E-Critic network is used to encourage the
EV-related reward based on the equation (7), and the P-Critic
network is to restrain the egoism of policy.

The value of the action-state pair calculated by the E-Critic
network is recorded as QR. Based on the Bellman equation
[32], it can be written as:

QR (st, at) = γEst+1

�
V
�
st+1

��
+ R(st, at) (9)

where R(st, at) is the EV-related reward designed in the MDP
model in equation (7), V(st+1) is calculated as below:

V (st) = Eat∼π

�
QR (st, at) − α log π (at | st)

�
(10)

In the P-Critic network, to synchronously evaluate the
harmony of action-state pairs, we summarize the harmony-
related value QH (st, at) in equation (11).

QH (st, at) = γEst+1

�
H
�
st+1

��
−CH(st, at) (11)

where CH(st, at) is the harmony cost derived from the IISG
cost matrix, including safety, comfort, and efficiency cost
components, which will be derived in the next subsection. The
opposite value of CH(st, at) represents the harmony utility;
H(st+1) represents the harmony-related value of state st+1,
which is calculated as follows:

H (st) = Eat∼π

�
QH (st, at) − α log π (at | st)

�
(12)

B. The Composition of Harmony Cost

Harmony cost aligns with the cost function in the IISG
model and quantifies the “rewards” for game participants, aim-
ing for an optimal outcome that enhances both the EV’s and
the trailing vehicle’s interests as modeled in our lane-changing
IISG framework (detailed in Section V). The “reward” of a
lane change can be calculated using safety, efficiency, and
comfort metrics [33], thus we define the Harmony cost in terms
of these 3 key performance indicators.

1) Safety Cost: This part includes safety-related costs for
ego vehicles and potential right-of-way competitors, i.e. the
following SV of the target lane. The safety cost is the summary
of weighted lateral and longitudinal safety costs:

Csafe = ωsafelatCsafelat + ωsafelonCsafelon (13)

which includes the following components:
(1) Lateral safety cost
The lateral safety cost represents the feasibility of lane

change of the vehicle.

Csafelat = κvlatλeo∆v2
eo +

κslat

∆s2
eo + ε

(14)

in which κvlat , κslat are the weights for the relative speed ∆veo
and relative distance ∆seo between the EV and the opponent
vehicle (OV) in the game, λeo is flags indicating the speed
deviation between EV and OV within the interaction range, ε
is a small value to prevent division by zero.

(2) Longitudinal safety cost
The longitudinal cost mainly considers the distance and

speed difference between the EV and the lead vehicle in the
same lane.

Csafelon = κvlonλle∆vle
2 +

κslon�
∆sle

2 + ε
� (15)

where κvlon , κslon are the corresponding weights for relative
speed ∆vle and relative distance ∆sle between EV and its
leading vehicle.

2) Comfort Cost: The comfort cost component captures the
impact of acceleration on the comfort of vehicles.

Ccom = κaxax
2 + κayay

2 (16)

where κax, κay are the weights for longitudinal and lateral
accelerations.

3) Efficiency Cost: The efficiency cost represents the accel-
eration capability of the EV.

Ceff = (ve − vlim)2 (17)

where ve is EV speed and vlim is the speed limit of road.
The comprehensive harmony cost integrates these cost com-

ponents into a function:

CH = ωsafeCsafe + ωcomCcom + ωeffCeff (18)

The cost components within CH will be normalized by
their respective differences between maximum and minimum
values to eliminate the impact of dimensional scales. After
normalization, the resulting C′H is used to assess the harmony
of the policy while considering aspects of safety, comfort, and
efficiency. During the training process, equal importance was
assigned to these three aspects to ensure balanced optimization
without bias toward any single factor. Specifically, the weight-
ing parameters ω in Equation (18) were each configured with
a value of 0.33, reflecting this balanced approach to harmony
quantification. This parameterization enables the model to
develop lane-changing policies that simultaneously optimize
for all three dimensions of harmony rather than privileging
one aspect at the expense of others.

C. The Update Algorithm With Dual Critics in CHRL

The update algorithm with dual critics during training in
CHRL can be constructed in Algorithm 1:

According to Algorithm 1, once a batch of experience pool
data is accumulated, the update process begins. The Q-value
and harmony cost are calculated based on the action-state pairs
stored in the experience pool. Then the loss of both critics is
calculated. By updating the E-Critic and P-Critic with losses,
we can then refine the estimations of different state-action
pairs. This, in turn, enables the actor’s policy to maximize
expected cumulative rewards and minimize the harmony cost.
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Algorithm 1 The Update Algorithm During Training
for each time step t do

entt+1R,H, a, obst+1 ← E[Plog], Env(obst)
s, a→ bu f f er
if after a batch then

a, s, Plog ← buffer
update QR,QH

QR = argmin(µr[a,s] − atarr
∗)

QH = argmin(µh[a,s] − atarh
∗)

Qπ(a|s) = ωRQR + ωH QH

update critics← loss(QR), loss(QH)
update actor ← loss(π(a|s))

end if
end for

An entropy value in the form of equation (19) is incorpo-
rated as a soft part.

Ent(π (a | st)) = Ex∼p[− log(π (a | st))] (19)

The soft part is used to find a balance between utility and
exploration.

V. POLICY GENERATION WITH HARMONY GUIDANCE

A. Harmony Assessment

Dangerous actions like collisions once occur, would result
in extremely terrible damage, so it should be treated more
seriously in contrast to normal disharmony. To enhance the
recognition of CHRL for dangerous actions, we have intro-
duced a harmony assessment mechanism. This mechanism is
used to label dangerous actions, which are then guided through
IISG to improve harmony.

To assess the danger, we first predict the trajectory of
SVs with the method in [34] and then calculate the collision
probability between EV and SVs based on the equation (20a).

Pcoll(Tplan,Tpre) =
1
X

XX
i=1

Ic(S EV , S S V ) (20a)

Danger =

(
True, Pcoll ≥ Pthres

False, Pcoll ≤ Pthres
(20b)

where Tpre stands for the predicted trajectories of SVs with
Gaussian uncertainty, S EV is the set of planned trajectory
poses of EV at time t, S S V is the correspondingly set of
predicted trajectory poses of the SVs according, Ic is used
to mark whether the i-th sampled pose has a collision. The
collision probability is the ratio of the number of collision
points number to the total number X of sampling points. The
dangerous action is marked if the collision probability over a
high disharmony threshold, as equation (20b) shows.

B. Harmony Guidance

For dangerous actions, an IISG model is established to
generate a reference harmony action as expert demonstration.

TABLE I
SAFETY, COMFORT, AND EFFICIENCY WEIGHTS

FOR DIFFERENT CHARACTERS

1) the IISG Model: The key parts of a game are defined
as follows: (1)Game players: EV and game vehicle (GV), i.e.,
the trailing vehicle in the target lane of the EV. (2) Knowledge
space: consistent with the RL observation space. (3) Game
matrix: The game cost of different actions is calculated using
the equation (18) of harmony cost in the P-critic network to
maintain consistency with the overall network’s representation
of harmony. Assuming that the EV is engaged in a lane-
change game and the GV maintains its current trajectory, the
feasible actions sampled from the action space for the EV
is AGT = (xd, a, lanetar), and assume that the GV has no
lane changing, only longitudinal acceleration actions. In action
space, xd ranging from [10, 45]m with a constrain of max
steering angle and acceleration, a ranging from [−3, 3]m/s,
and lanetar is an action from a discrete set (left,half-left,
keep,half-right, right).

2) Game Solution: To model the drivers more realistically,
we categorize the GV into three character types: aggressive,
normal, and modest. Based on the historical acceleration agv

of the GV, we can infer the character distribution of the GV’s
character with equation (21).

�
Pagg, Paco, Pmod

�
=

8̂<̂
:

(0.0, 0.2, 0.8), agv < −2m/s
(0.1, 0.8, 0.1),−2m/s ≤ agv ≤ 2m/s
(0.8, 0.2, 0.0), agv > 2m/s.

(21)
Based on the utility matrix introduced in the P-critic net-

work, we update the GV’s payoff in the utility matrix with
character according to the personality weights in Table I. Then
a fictitious play algorithm [35], [36] is set to learn the Bayesian
Nash Equilibrium.

Algorithm 2 Game Solution
input S EV , S GV , actionsample

while not converged do
for each action pair in actionsample do
costEV , costGV ← CalCost(tprediction)
end for
Update game matrix
end while

output AGT ←convergent Bayesian Nash equilibrium

As the Algorithm 2 shows, in every iteration, a Nash
equilibrium solution is calculated after traversing all possible
action samples. After 100 iterations, the Bayesian equilibrium
solution converges to the dominant Nash equilibrium solution
and becomes the reference harmonious action.
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C. Expert Demonstration Experiences Enhancement

At the network level, considering the P-Critic’s targeted
focus on harmony, we designed a mechanism that emphasizes
dangerous actions in the prosocial experience pool. We treat
episodes following Harmony Guidance as “expert demonstra-
tion experiences”, and redeploy them for prioritized experience
replay.

The structure of the experience pool with prioritized replay
of expert experiences can be represented as follows:

EV-related Experience =
˚
(a, s)safe, (a, s)danger

	
Prosocial Experience =

˚
(a, s)safe, (a, s)danger, (a, s)danger

	
(22)

This mechanism establishes a connection between the pol-
icy generation with harmony guidance and the dual critics,
unifying their objectives to foster harmony.

D. The Policy Update With Convergent Harmony Mechanism

Combining dual critics with harmony-guided policy gener-
ation, we implement the convergent harmony mechanism that
can update the agent’s policy under the algorithm 3:

Algorithm 3 Policy Update of CHRL
for each time step t do

entt+1R,H,ARL, obst+1 ← E[Plog], Env(obst)
a = ARL
Harmony assessment of current ARL.
if ARL is danger then

Harmony guidance of the dangerous action.
a = AGT
Save the dangerous s, a pair to the prosocial experi-
ment pool.
s, a→ harmony bu f f er

end if
Save the s,a pair to the EV-related experiment pool.
s, a→ bu f f er
Update dual critics.
if after a batch then

update QR,QH ← buffer, harmony buffer
Update actor network based on dual critics.
update actor ← ωRQR + ωH QH

end if
end for

The dual critics and the harmony guidance during policy
generation can interact with each other and promote the agent
to achieve an overall more harmonious policy.

VI. EXPERIMENTS

A. Experimental Objectives and Design

This experimental study aims to verify whether CHRL
consistently produces smooth, stable, and efficient harmonious
lane changes across varying conditions. We will evaluate
CHRL’s performance in both random scenarios with differ-
ent traffic densities and real-data scenarios featuring human
driving behaviors, benchmarking against rule-based methods,
human drivers, and other harmony-focused RL agents.

Using tailored harmony assessment metrics, we specifically
examine the lane-changing harmony when CHRL interacts
with both computational and human-driven vehicles in diverse
traffic patterns.

To describe the experiment configuration, some key exper-
imental parameters are set:
• Traffic density: The number of vehicles in a specific

stretch of the three-lane highway.
• Gap: The distance between consecutive vehicles in the

traffic flow.
• v̄lc: The average lane-change speed of EV.
• v̄lcLCW: The average lane-change speed of all vehicles in

LCW.
The relationship between traffic density and the initial gap

is as follows:
Gap =

1
density

min dS (23)

where min dS is the minimized default inter-vehicle distance,
which is a discrete value derived from common driving
practice that increases with the EV’s velocity. The specific gap
values corresponding to different traffic densities according to
Equation 23 are presented in Table II, demonstrating how our
experimental setup accounts for variations in traffic conditions
while focusing on interaction harmony within the LCW.

B. Metrics Design

The differences in safety and efficiency of the EV under
different lane-change methods are measured to evaluate the
overall lane-change capability. Related indicators are also
statistically analyzed to evaluate the overall harmony of lane
changes.

1) Safety Metrics: (1) the collision number (ncrash); (2) the
collision rate (rcrash) of all decisions.

2) Efficiency Metric: (1) the number of lane changes nlc:
It is one of the signs of lane change ability; (2) the average
EV lane-change speed v̄lc; and (3) the average lane change
time t̄lc.

3) Harmony Metrics: (1) the Mean absolute deviation
(MAD) of vehicles’ lane-change speeds in the LCW (MADvlc )
[11]: This index mainly measures the overall safety during
lane-changing. Note that MAD focuses on the “potential risks”
during the interaction, while the collision rate in the safety
metric is based on the vehicle’s perspective. A smaller MAD
value indicates an overall safer LCW. The MADvlc can be
calculated by equation (24).

MADvlc =

tlcP
t=0

MADLCW

tlc
(24)

where,

MADLCW =

nP
i=0

vi − v̄iLCW

n
(25)

refers to the MAD of speed between vehicles in the LCW,
which reflects the stability of the current snapshot. MADvlc in
equation (24) is the average MADLCW of all time steps in an
episode, reflecting the overall safety of the LCW.
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TABLE II
THE CONSTRUCT OF 3 SCENARIOS

(2) Absolute lateral and longitudinal acceleration |āx|, |āy|:
|āx| represents the stability of the lane-change policy [37].
Harmonious lane changes should adopt a smooth policy to
minimize the |āx|. Although a larger |āy| will lead to faster
lane changes, it will also reduce comfort. However, a too-small
lateral acceleration will also cause an unreasonable long lane-
change distance and even weaken the EV’s efficiency. This
may then go against the original intention of free lane changes.
Therefore, |āy| can be used to observe whether the lane-change
policy can balance efficiency and comfort.

4) Human-Likeness: we additionally analyzed the Human-
likeness in the HighD scenario. The metric is speed deviation
dev(v) between the tested methods and human drivers, in
equation (26).

MD (v) =

nP
i=0

ˇ̌
vti

m − vti
h

ˇ̌
n

(26)

We analyzed the human-likeness of EV speed and LCW
speed during lane-changing, to observe whether a lane-change
method can meet human efficiency needs while enhancing
harmony.

C. Scenario Construction

We devised both random and real-data scenarios for our
experimentations, applying random scenarios during training
and ablation experiments, while leveraging real-data scenar-
ios for cross-comparison experiments with other mainstream
methods.

For randomly generated scenarios, the inter-vehicle initial
Gap (detailed in Table II) was derived by applying the pre-
determined traffic density to Equation 23.

The random scenario is based on the Highway-Env plat-
form. As for the real data scenario, we generated a collection
of test scenarios based on the HighD dataset.

The construction of scenarios is as Table II. In the random
scenario, the agents were tested 150 times under the traffic
densities range in Table II, resulting in a total of 33,750
decision numbers. While real-data scenarios include nearly
33,000 decisions in 1,417 cases from the HighD dataset. These
cases contain lane changes with a minimum TTC of less
than 6 seconds. We constructed 2 real-data scenarios, both
scenarios chose only one human-driven vehicle that performed
lane changes in the original dataset as the EV in each episode,
and different decision-making methods were used for the EV.
SVs in HighD1 are driven under the origin dataset to analyze
the human-likeness of tested methods, while SVs in HighD2

TABLE III
STRUCTURES OF SAC, SACP, SACH, CHRL

drive under the IDM and Mobil methods to interact with the
EV so that can measure the impact of the EV’s lane-change
policy on the LCW.

D. Models Structure

In ablation experiments with the random scenario, the
SAC (Soft Actor-Critic, SAC) [40] model is set as the base-
line, To more specifically analyze the contribution of the
P-Critic network and harmony guidance module to CHRL,
we carry out ablation experiments with two other agents:
the lane-change agent based on the SACP (Soft Actor-
Critic-Prosocial, SACP) network and based on the SACH
(Soft Actor Critic with the harmony guidance module,
SACH) network, respectively. Table III shows the archi-
tecture comparison of the SAC-based agents in ablation
experiments. Hyperparameters setting follows the expressions:
learning rate = max

�
10−3, 0.999neps 10−2�, Batch Size = 256,

Discount Factor(γ) = 0.99, Entropy Coefficient(τ) = 0.005.
Harmony weight = min (0.5, 0.05 + 1.0004neps ) in SACP and
CHRL, and it’s set to be 0 in SAC and SACH.

In cross-comparison experiments with HighD scenarios, the
following mainstream methods are included:

(1) Rule-based method: The Intelligent Driver Model (IDM)
[38] is utilized as a representative baseline approach.

(2) RL agent with disharmony penalty: As opposed to
the dual critics structure, we introduce a Disharmony-
Punished SAC (DPSAC) model. The disharmony penalty
in DPSAC is computed using equation (18) and incorpo-
rated into the comprehensive reward R′. Subsequently,
the rewards are evaluated by a single critic. By com-
paring with the DPSAC model, we can identify the
enhancements achieved by the dual critics structure.

(3) RL agents with rule constraints: three additional com-
parative methods that employ rule constraints to enhance
the lane-change capabilities of the RL agent are intro-
duced. i) The first is a Collision-Risk Constrained RL
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Fig. 3. The training result of learning-based models.

(CCRL) model leveraging the Double Deep Q-Network
(DDQN) framework [41], [42], which includes collision
risk as a safety constraint to refine lane-change strate-
gies; ii) To further enhance the structural control over
the network, this study also compared the SAC network
with safety rule constraints, referred to as Constrained-
Safety SAC (CCSAC); iii) The third is a Game Theory
constrained RL (GCRL) method based on the DDQN
framework [21], which incorporates a GT model to
influence policy during training. By comparing with
the rule-constraint RL method, we can demonstrate the
advantages of the CHRL framework in promoting policy
exploration.

All models utilized the same EV-related reward, network
architecture, and observation space, and were trained using
identically designed Random Scenarios to ensure a consistent
training environment.

E. Training Rusults

We trained each model five times and conducted statistical
analyses on four performance metrics: episode lengths, crash
rate, average speed, and mean speed deviation within the LCW.

Fig. 3 and Table IV show the training metrics for 7 methods,
focusing on the last 2000 episodes. In Fig, 3, the colored lines
indicate the average metric values for each method, while the
color blocks around them represent the range of results from
5 training runs, with Gaussian smoothing applied.

The training metrics show that compared to SAC, CHRL
achieves 8.6% longer episodes, 27.6% fewer collisions, 1.5%
higher speeds, and 23.5% more consistent LCW speed, high-
lighting its safe, efficient, and harmonious policy. CHRL
outperforms other learning-based methods by finding more
balanced strategies and a better understanding of interac-
tion harmony, leading to enhanced lane-change safety and
stability–fulfilling our design goals.

TABLE IV

TRAINING RESULTS OF LAST 2000 EPISODES

The ablation models SACP (only with P-Critic) and SACH
(only with Harmony Guidance) outperform SAC in all metrics.
With an average around 17.9% less MAD and a 5.6% longer
episode duration than SAC, these features show that conver-
gent harmony module improves both lane-change performance
and LCW stability. SACP enhances efficiency over SAC and
SACH, indicating that interaction guidance during evaluation
aids optimal policy exploration. However, SACH achieves a
superior crash rate, decreasing by 17.3% compared to SAC,
benefiting from its harmony constraints during execution. The
ablation models also demonstrate the benefits of the P-Critic
and Harmony Guidance for safe, stable and efficient LCW.

F. Test Results of Random Scenario

We conducted ablation experiments using random scenarios
and analyzed the results based on corresponding metrics.

1) Safety: As safe metrics in Table V show CHRL has a
0-collision result, while SAC has the highest crash number.
SACP, which introduces the P-Critic network, will pay atten-
tion to the safety cost of interaction, so its collision rate is less.
SACH conducts harmonious guidance when making decisions,
replacing dangerous actions with safer IISG solutions, which
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TABLE V

STATISTICS TABLE OF EFFICIENCY METRICS & HARMONY METRICS IN RANDOM SCENARIOS

Fig. 4. The boxplot of lane-change speed MAD of vehicles in LCW, with SAC, SACP, and SACH methods in blue and CHRL method in red.

directly strengthens interaction safety of decision, so the
collision rate of SACH is only 0.002%. SACH still had a crash,
it is because the game-based harmonious guidance mechanism
would only intervene when the collision risk was higher than
0.8. However, during the crash episode, the vehicle speed was
too high, and the front vehicle was slower with a narrow
distance. Despite SACH’s decision to slow down with the
maximum acceleration, an unavoidable collision still occurred.
This problem shows that the risk threshold and the longitudinal
action space can be further optimized. Our group will further
consider related issues. In CHRL, the harmony guidance and
the P-Critic can mutually promote each other to enhance the
harmony of the lane-change decision, making CHRL have the
highest interaction safety and completely avoid collisions in
the test set.

2) Efficiency: As can be seen from Table V, CHRL takes
the harmony of interactions into account during action evalu-
ation and generation, which improves the efficiency of EV
based on overall interaction safety. The nlc of CHRL is
significantly increased by 39.97% compared to SAC, and the
t̄lc is shortened by 7.73% compared to SAC, achieving the
maximum number of lane changing while ensuring the lowest
collision. It is proved that by introducing the lane-change IISG
interaction model, the safety and efficiency of lane changes can
be improved simultaneously.

3) Harmony Metrics: The harmony metrics in V demon-
strate CHRL’s superior performance with the lowest MADvlc
and average smallest |āx|. Compared to standard SAC, CHRL

reduces speed discreteness in LCW by 45.30% and |āx| by
17.17%, with only a slight increase in |āy|, confirming its
optimal harmony-safety balance.

Fig. 4 shows that CHRL maintains consistently lower
MADvlc distribution across all traffic densities. While con-
gested conditions naturally reduce MADvlc as vehicles
maintain similar speeds to avoid collisions, CHRL outperforms
all comparison methods. SACP, guided by harmony cost,
shows improved performance over SAC. SACH, with harmony
guidance during decision generation, further reduces MADvlc.
CHRL, integrating both mechanisms, achieves the best results
by monitoring dangerous actions and optimizing for harmony
during training.

CHRL demonstrates more stable acceleration profiles in
congested traffic, avoiding sudden braking or rushing during
lane changes. The slight increase in |āy| enables faster lane-
change completion, reducing the duration that might otherwise
require more longitudinal adjustments, thereby enhancing
overall LCW harmony.

4) Comprehensive Analysis: Comprehensive analysis
reveals CHRL’s superior performance across multiple
dimensions. CHRL reduces potential risks through improved
harmony guidance and enhanced speed consistency during
lane changes. Compared to SAC, CHRL achieves 10% shorter
lane-changing time while maintaining the lowest average |āx|,
demonstrating an optimal balance between efficiency and
comfort. This superior vehicle spacing control prevents risks
from sudden speed variations, confirming that the convergent
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TABLE VI

STATISTICS TABLE OF SAFETY, EFFICIENCY, AND HARMONY METRICS OF CROSS-COMPARISON METHODS IN HIGHD SCENARIOS

Fig. 5. (a) shows the distribution of lane-change speed deviation of EV and LCW between human-driven and cross-comparison methods; (b), (c), (d) are
boxplots of the MAD(vlc), |āx |, |āy | for cross-comparison methods in HighD scenarios. The black dot represents the average value, the box indicates the 25th
to 75th percentile distribution, and the vertical line denotes the 10th to 90th percentile distribution.

harmony mechanism significantly enhances both safety and
lane-change efficiency.

G. Test Results of HighD Scenarios

Cross-comparison experiments are performed on the HighD
Scenarios to evaluate the methods described in the model
structure section, with subsequent analyses generated.

1) Safety and Human-Likeness: Through the statistics in
Table (VI), it can be seen that the CHRL method can achieve
the same 0 collision result as the Origin dataset, and has
the smallest absolute values of MD(v̄) and MD(v̄LCW) rela-
tive to human drivers. DPSAC resulted in a few collisions
due to insufficient prediction of SVs during lane-change
interactions and less comprehensive consideration for overall
safety. CCRL, CCSAC and GCRL methods, which did not
incorporate harmony cost, considered SVs even less during
lane changes, producing more disharmonious trajectories that
sometimes led to scrapes.

Meanwhile, IDM and DPSAC often do not pay enough
attention to SVs, making collisions occur. It shows that CHRL
can not only take into account the overall safety and avoid
collisions in time but also strengthen the consideration of

interactions in LCW so that CHRL pays more attention to
the distance and speed differences between vehicles in LCW
and avoids collisions in advance.

Comparing the human-likeness of the EV speed and the
speed of the overall LCW in Fig. 5(a), both the MD of LCW
and EV speed of CHRL are closer to the Human in the red
dashed line. This demonstrates that CHRL is more human-like
in efficiency compared to other agents.

2) Efficiency: CHRL outperforms in efficiency metrics nlc,
t̄lc, v̄lc, and v̄lcLCW as seen in Table VI, enabling faster and safer
lane changes. Although IDM’s lane change time is minimal,
its aggressive policy overlooks SV awareness and increases
collision risks. In HighD2, CHRL boosts average LCW speed
v̄lcLCW by 2%(from 28.20m/s to 28.76m/s) with its harmonious
strategy, showcasing the efficacy of combining Harmony Guid-
ance and P-Critic for balanced safety and efficiency.

3) Harmony: Fig. 5 (b) shows that CHRL maintains con-
sistently lower MADvlc across all scenarios, improving this
metric by 45.5-77.1% compared to Human, DPSAC, CCRL,
CCSAC, GCRL, and IDM models as detailed in Table VI.
This confirms CHRL achieves the highest speed uniformity in
LCW, creating more harmonious traffic flow.
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Fig. 6. A snapshot of a lane-change example under the same HighD scenario during testing.

Fig. 5 (c)(d) reveals distinct acceleration patterns. Human
drivers exhibit small |āx| with large |āy|, prioritizing per-
sonal efficiency while considering longitudinal harmony.
CHRL adopts a similar strategy but with more balanced
parameters–smaller |āy| and moderate |āx|–optimizing both
harmony and efficiency. In contrast, methods without harmony
consideration show larger |āx|, indicating poor handling of sur-
rounding vehicles and tendency toward aggressive maneuvers.
CHRL’s coupling of interaction mechanisms with P-Critic
enables deeper understanding of lane-change harmony dynam-
ics, resulting in superior performance across metrics.

Cross-comparison experiments confirm CHRL’s ability to
enhance both ego vehicle and overall traffic efficiency while
maintaining optimal harmony in diverse traffic scenarios.

4) Case Discussion: Taking an example of test cases,
we can further illustrate how CHRL achieves lane-change
harmony.

The example in Fig. 6 illustrates that human drivers often
choose more aggressive lane changes than learning-based
models. CHRL, supported by an IISG model, provides a bal-
ance between the EV’s and SVs’ benefits, yielding trajectories
that are smoother than both humans and more efficient than
other learning-based approaches. CHRL’s deeper understand-
ing of interactions is evident as it successfully executes lane
changes on the first try, while Other learning-based methods
initiate premature lane changes near the 300m mark and
have to correct back after encountering faster-trailing vehicles,
leading to a secondary attempt.

This illustrates that integrating interactive guidance mecha-
nisms and the P-Critic can significantly improve the CHRL’s
interaction awareness and its ability to optimize the LCW
benefits.

5) Comprehensive Analysis: Concurrently, leveraging
dependency decoupling within its dual critics architecture, our
approach demonstrably enhances key harmony performance
indicators.

VII. CONCLUSION

This paper implements a convergent harmony reinforcement
learning framework in lane change decision-making, intro-
duces a P-Critic network and a harmony guidance module,
and promotes the harmony of the policy through disharmony
criticism and IISG-based overall optimization. The P-Critic
network evaluates the benefits of the entire surrounding traffic
by considering the safety, comfort, and efficiency of the

ego vehicle and surrounding vehicles to improve the agent’s
consideration of traffic harmony when making lane-change
decisions. The role of the harmony guidance module is to fur-
ther enhance the focus on traffic safety, it monitors the actions
provided by the actor network, marks dangerous actions, and
replaces them with IISG-based overall safety actions, which
will improve the ability of collision-avoidance of the agent,
enabling a more harmonious policy in an overall safe way.

Both the ablation experiments and the cross-comparison
experiments show that CHRL has improved the harmony of the
ego vehicle’s lane-change actions and the surrounding traffic.
Specifically, the contributions can be classified as follows:

1) Harmony in Ego Vehicle:

CHRL lowers the collision rate to 0% while showing higher
speeds and shorter lane-change times. This indicates that
CHRL strikes a better balance between safety, comfort, and
efficiency.

2) Harmony in the Surrounding Traffic:

CHRL makes its surrounding traffic the smallest lane-
change speed deviation, which is significantly lower than that
of human drivers by 75.4%. This demonstrates a higher over-
all safety. Additionally, the lane-change trajectory of CHRL
is gentler and the longitudinal acceleration is lower, which
reduces interference of surrounding vehicles and improves
traffic harmony.

In future work, we aim to enhance CHRL’s adaptability
to target speeds during training and expand its application
scenarios to urban or low-speed scenarios. Additionally, we
plan to further enhance the transportability of the CHRL,
to develop a more compatible frame that can be integrated
conveniently with different networks.

REFERENCES

[1] H. Jula, E. B. Kosmatopoulos, and P. A. Ioannou, “Collision avoidance
analysis for lane changing and merging,” IEEE Trans. Veh. Technol.,
vol. 49, no. 6, pp. 2295–2308, Jun. 2000.

[2] H. Deng, Y. Zhao, Q. Wang, and A.-T. Nguyen, “Deep reinforcement
learning based decision-making strategy of autonomous vehicle in
highway uncertain driving environments,” Automot. Innov., vol. 6, no. 3,
pp. 438–452, Aug. 2023.

[3] Z. Li, J. Hu, B. Leng, L. Xiong, and Z. Fu, “An integrated of decision
making and motion planning framework for enhanced oscillation-
free capability,” IEEE Trans. Intell. Transp. Syst., vol. 25, no. 6,
pp. 5718–5732, Jun. 2024.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on August 21,2025 at 06:55:48 UTC from IEEE Xplore.  Restrictions apply. 



YANG et al.: CHRL—LANE CHANGING IN A MORE TRAFFIC FRIENDLY WAY 13

[4] X. He, H. Yang, Z. Hu, and C. Lv, “Robust lane change decision
making for autonomous vehicles: An observation adversarial reinforce-
ment learning approach,” IEEE Trans. Intell. Vehicles, vol. 8, no. 1,
pp. 184–193, Jan. 2023.

[5] J. Yao, G. Chen, and Z. Gao, “Target vehicle selection algorithm for
adaptive cruise control based on lane-changing intention of preceding
vehicle,” Chin. J. Mech. Eng., vol. 34, no. 1, pp. 1–18, Dec. 2021.

[6] A. J. Khattak, N. Ahmad, B. Wali, and E. Dumbaugh, “A taxonomy
of driving errors and violations: Evidence from the naturalistic driving
study,” Accident Anal. Prevention, vol. 151, Mar. 2021, Art. no. 105873.

[7] B. Leng et al., “Multi-mode evasion assistance control method for
intelligent distributed-drive electric vehicle considering human driver’s
reaction,” Chin. J. Mech. Eng., vol. 38, no. 1, p. 102, Jun. 2025.

[8] A. Irshayyid, J. Chen, and G. Xiong, “A review on reinforcement
learning-based highway autonomous vehicle control,” Green Energy
Intell. Transp., vol. 3, no. 4, Aug. 2024, Art. no. 100156.

[9] Y. Yang, N. M. Negash, and J. Yang, “Recent advances in interactive
driving of autonomous vehicles: Comprehensive review of approaches,”
Automot. Innov., vol. 8, no. 2, pp. 304–334, May 2025.

[10] H. Li, G. Yu, P. Chen, Y. Li, and Q. Xia, “A human-like parking
trajectory planning approach for autonomous vehicle load tasks in
mining site,” Automot. Innov., vol. 2025, pp. 1–22, Jul. 2025.

[11] X. Wang, Q. Zhou, M. Quddus, T. Fan, and S. Fang, “Speed, speed
variation and crash relationships for urban arterials,” Accident Anal.
Prevention, vol. 113, pp. 236–243, Apr. 2018.

[12] J. Nilsson, M. Brännström, E. Coelingh, and J. Fredriksson, “Lane
change maneuvers for automated vehicles,” IEEE Trans. Intell. Transp.
Syst., vol. 18, no. 5, pp. 1087–1096, May 2017.

[13] Y. Chen, H. Yu, J. Zhang, and D. Cao, “Lane-exchanging driving strategy
for autonomous vehicle via trajectory prediction and model predictive
control,” Chin. J. Mech. Eng., vol. 35, no. 1, p. 71, Dec. 2022.

[14] T. Wei and C. Liu, “Safe control with neural network dynamic models,”
in Proc. Learn. Dyn. Control Conf., 2021, pp. 739–750.

[15] G. Li, W. Zhou, S. Lin, S. Li, and X. Qu, “On-ramp merging for highway
autonomous driving: An application of a new safety indicator in deep
reinforcement learning,” Automot. Innov., vol. 6, no. 3, pp. 453–465,
Aug. 2023.

[16] L. Zhang, Q. Zhang, L. Shen, B. Yuan, X. Wang, and D. Tao, “Evaluating
model-free reinforcement learning toward safety-critical tasks,” in Proc.
AAAI Conf. Artif. Intell., 2023, vol. 37, no. 12, pp. 15313–15321.

[17] H. Lu, C. Lu, Y. Yu, G. Xiong, and J. Gong, “Autonomous overtaking for
intelligent vehicles considering social preference based on hierarchical
reinforcement learning,” Automot. Innov., vol. 5, no. 2, pp. 195–208,
Apr. 2022.

[18] H. Shao, M. Zhang, T. Feng, and Y. Dong, “A discretionary
lane-changing decision-making mechanism incorporating drivers’ het-
erogeneity: A signalling game-based approach,” J. Adv. Transp.,
vol. 2020, pp. 1–16, Jan. 2020.

[19] P. Hang, C. Lv, Y. Xing, C. Huang, and Z. Hu, “Human-like
decision making for autonomous driving: A noncooperative game
theoretic approach,” IEEE Trans. Intell. Transp. Syst., vol. 22, no. 4,
pp. 2076–2087, Apr. 2021.

[20] P. Hang, C. Lv, C. Huang, Y. Xing, and Z. Hu, “Cooperative decision
making of connected automated vehicles at multi-lane merging zone: A
coalitional game approach,” IEEE Trans. Intell. Transp. Syst., vol. 23,
no. 4, pp. 3829–3841, Apr. 2022.

[21] R. Yang, Z. Li, B. Leng, and L. Xiong, “Safe reinforcement learning for
autonomous vehicles to make lane-change decisions: Constraint based
on incomplete information game theory,” in Proc. 7th CAA Int. Conf.
Veh. Control Intell. (CVCI), Oct. 2023, pp. 1–6.

[22] S. Karimi, A. Karimi, and A. Vahidi, “Level-K reasoning, deep rein-
forcement learning, and Monte Carlo decision process for fast and safe
automated lane change and speed management,” IEEE Trans. Intell.
Vehicles, vol. 8, no. 6, pp. 3556–3571, Jun. 2023.

[23] G. Wang, J. Hu, Z. Li, and L. Li, “Harmonious lane changing via deep
reinforcement learning,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 5,
pp. 4642–4650, May 2022.

[24] S. Mysore, G. Cheng, Y. Zhao, K. Saenko, and M. Wu, “Multi-critic
actor learning: Teaching RL policies to act with style,” in Proc. Int.
Conf. Learn. Represent., 2022, pp. 1–23.

[25] H. Bharadhwaj, A. Kumar, N. Rhinehart, S. Levine, F. Shkurti,
and A. Garg, “Conservative safety critics for exploration,” 2020,
arXiv:2010.14497.

[26] L. Wen, J. Duan, S. E. Li, S. Xu, and H. Peng, “Safe reinforcement
learning for autonomous vehicles through parallel constrained policy
optimization,” in Proc. IEEE 23rd Int. Conf. Intell. Transp. Syst. (ITSC),
Sep. 2020, pp. 1–7.

[27] H. Ma, C. Liu, S. E. Li, S. Zheng, and J. Chen, “Joint synthesis of
safety certificate and safe control policy using constrained reinforcement
learning,” in Proc. 4th Annu. Learn. Dyn. Control Conf., vol. 168, 2022,
pp. 97–109.

[28] W. Zhao, T. He, R. Chen, T. Wei, and C. Liu, “State-wise safe
reinforcement learning: A survey,” 2023, arXiv:2302.03122.

[29] R. S. Sutton et al., Introduction to Reinforcement Learning, vol. 135.
Cambridge, MA, USA: MIT Press, 1998.

[30] M. Werling, J. Ziegler, S. Kammel, and S. Thrun, “Optimal trajectory
generation for dynamic street scenarios in a Frenet frame,” in Proc.
IEEE Int. Conf. Robot. Autom., May 2010, pp. 987–993.

[31] S. Jeong and J. Choi, “Differentiable moving horizon estimation for
vehicle kinematics via learning covariance matrices,” IEEE Trans. Intell.
Vehicles, vol. 9, no. 9, pp. 5955–5969, Sep. 2024.

[32] T. Nishi, P. Doshi, and D. Prokhorov, “Merging in congested free-
way traffic using multipolicy decision making and passive actor-critic
learning,” IEEE Trans. Intell. Vehicles, vol. 4, no. 2, pp. 287–297, Jun.
2019.

[33] H. Wang, W. Wang, S. Yuan, X. Li, and L. Sun, “On social interactions
of merging behaviors at highway on-ramps in congested traffic,” IEEE
Trans. Intell. Transp. Syst., vol. 23, no. 8, pp. 11237–11248, Aug. 2022.

[34] D. Zeng et al., “A novel robust lane change trajectory planning method
for autonomous vehicle,” in Proc. IEEE Intell. Vehicles Symp., Paris,
France, Jun. 2019, pp. 486–493.

[35] P. K. Dutta, Strategies and Games: Theory and Practice. Cambridge,
MA, USA: MIT Press, 1999.

[36] T. Roughgarden, “Algorithmic game theory,” Commun. ACM, vol. 53,
no. 7, pp. 78–86, 2010.

[37] F. Zong, M. Wang, J. Tang, and M. Zeng, “Modeling AVs & RVs’
car-following behavior by considering impacts of multiple surround-
ing vehicles and driving characteristics,” Phys. A, Stat. Mech. Appl.,
vol. 589, Mar. 2022, Art. no. 126625.

[38] K. Hao et al., “Adversarial safety-critical scenario generation using
naturalistic human driving priors,” IEEE Trans. Intell. Vehicles, vol. 9,
no. 9, pp. 5392–5406, Sep. 2024.

[39] A. Kesting, M. Treiber, and D. Helbing, “General lane-changing model
MOBIL for car-following models,” Transp. Res. Rec., J. Transp. Res.
Board, vol. 1999, no. 1, pp. 86–94, Jan. 2007.

[40] T. Haarnoja et al., “Soft actor-critic algorithms and applications,” 2018,
arXiv:1812.05905.

[41] H. V. Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with
double Q-learning,” in Proc. AAAI Conf. Artif. Intell., vol. 30, 2016,
pp. 2094–2100.

[42] Z. Li, L. Xiong, B. Leng, P. Xu, and Z. Fu, “Safe reinforcement
learning of lane change decision making with risk-fused constraint,”
in Proc. IEEE 26th Int. Conf. Intell. Transp. Syst. (ITSC), Sep. 2023,
pp. 1313–1319.

Ruolin Yang received the B.E. degree in vehi-
cle engineering from Chang’an University, Xi’an,
China, in 2021. She is currently pursuing the M.Eng.
degree with the School of Automotive Studies,
Tongji University, Shanghai, China. Her research
interests include decision-making, motion-planning,
and reinforcement learning methods in autonomous
vehicles.

Zhuoren Li (Graduate Student Member, IEEE)
received the B.E. degree in engineering mechan-
ics from Tongji University, Shanghai, China, in
2019, where he is currently pursuing the Ph.D.
degree with the School of Automotive Studies.
His current research interests include interaction
decision-making, motion planning, and the safe rein-
forcement learning of autonomous vehicles.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on August 21,2025 at 06:55:48 UTC from IEEE Xplore.  Restrictions apply. 



14 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Bo Leng received the Ph.D. degree in vehicle engi-
neering from Tongji University, Shanghai, China.
He is currently an Associate Professor with the
School of Automotive Studies, Tongji University.
His current research interests include the dynamic
control of distributed drive electric vehicles and
motion planning and control of intelligent vehicles.
He has won the First Prize in China Automobile
Industry Technology Invention Award and the First
Prize in Shanghai Science and Technology Progress
Awards in 2020 and 2022. He has been selected into

the Young Elite Scientists Sponsorship Program of China Association for
Science and Technology in 2022.

Lu Xiong received the Ph.D. degree in vehicle engi-
neering from Tongji University, Shanghai, China, in
2005. He is currently the Vice President and a Pro-
fessor with the School of Automotive Studies, Tongji
University. His current research interests include
the dynamic control of distributed drive electric
vehicles, motion planning and control of intelligent
vehicles, and all-terrain vehicles. He won the First
Prize in Shanghai Science and Technology Progress
Awards in 2013, 2020, and 2022. He was a recipient
of the National Science Fund for Distinguished

Young Scholars.

Xin Xia received the B.E. degree in vehicle
engineering from the School of Mechanical and
Automotive Studies, South China University of
Technology, Guangzhou, China, in 2014, and the
Ph.D. degree in vehicle engineering from the School
of Automotive Studies, Tongji University, Shanghai,
China, in 2019. He was a Post-Doctoral Fellow
associated with Dr. Amir Khajepour at the Depart-
ment of Mechanical and Mechatronics Engineering,
University of Waterloo, Waterloo, ON, Canada,
from January 2020 to March 2021. After that, he

was an Assistant Professional Researcher with the Department of Civil
and Environmental Engineering, University of California at Los Angeles,
Los Angeles, CA, USA, from March 2021 to August 2024. He is currently
an Assistant Professor with the Department of Mechanical Engineering,
University of Michigan–Dearborn, Dearborn, MI, USA. His research interests
include state estimation, cooperative localization, cooperative perception, and
dynamics control of the autonomous vehicle.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on August 21,2025 at 06:55:48 UTC from IEEE Xplore.  Restrictions apply. 


