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Abstract—Motion planning for automated vehicles faces
critical challenges to achieve safe and efficient maneu-
vers. Classical modular motion planning, constrained by
error propagation and inconsistent optimization objectives
across different functional modules, often resulting in
overly conservative or irrational overtaking maneuvers. To
overcome these limitations, this paper attempts to inte-
grate discrete logic decision-making and continuous mo-
tion planning in a single optimal problem, and presents
a Hybrid Model Predictive Control (HMPC)-based motion
planner framework. In particular, a novel asymmetric risk
fields considering human drivers’ attention is incorporated
to guide safe and timely intrinsic decision. The proposed
framework eliminates the dependency on external semantic
decision-making modules while ensuring efficient and safe
maneuvers. Simulation and real vehicle test validate that
the proposed HMPC framework is able to outperform the
modular baseline, achieving safe and efficient overtaking
maneuvers in an interpretable optimization approach.

Index Terms—automated vehicles, hybrid model predic-
tive control, artificial potential fields, overtaking.

I. INTRODUCTION

AUTONOMOUS Vehicles (AVs), with their flexible
decision-making capabilities and dynamic optimization

mechanisms, are widely acknowledged for their potential
to mitigate traffic accidents, enhance energy efficiency and
occupant comfort, optimize traffic flow, and enable new forms
of mobility [1]. In real-world driving environments, AVs
must carry out complex overtaking maneuvers and make
timely decisions to improve traffic efficiency while ensuring
safety [2]. This presents significant challenges for motion
planning systems of AVs. Generally, it is believed that existing
motion planning algorithms can be broadly classified into two
categories: modular scheme and integrated scheme.

The modular motion planning scheme typically consists of
decision-making, trajectory planning, and motion control mod-
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ules [3]. Based on the reference path from routing, decision-
making selects the appropriate high-level driving behavior con-
sidering the perception results. Typical methods include deci-
sion trees [4], finite state machines [5], Markov processes [6],
and game theory [7]. In accordance with the selected driving
behavior, trajectory planning generates a collision-free spatio-
temporal trajectory [8], commonly including: sample-based [9]
and search-based approaches [10], which are computationally
lightweight but limited by map resolution and dynamic adapt-
ability; Artificial Potential Field (APF) methods [11], which
incorporate risk awareness by quantifying risks between the
vehicle and its surrounding environment but struggle with local
optima; and optimization-based methods [12], which formulate
the planning problem as an optimization problem, minimiz-
ing performance metrics to obtain safe trajectories. Finally,
motion control approach such as Linear Quadratic Regulator
(LQR) [13] and Model Predictive Control (MPC) [14], are em-
ployed to compute desired control commands. Characterized
by a clear logical structure, modular scheme based methods
are easy to design and maintain. However, they are susceptible
to issues such as information loss between modules, error
propagation, and inconsistent optimization objectives, which
can result in unexecuted or unreasonable motion, especially
in dynamic scenarios such as overtaking maneuvers [2].

In addressing the issues inherent in the modular scheme, sig-
nificant efforts have been dedicated to integrate the modules.
Among them, MPC has gained prominence due to its ability
to leverage predictive information and handle multi-constraint
optimization, making it a predominant method for integrated
motion planning [15]. Zuo et al. [16] apply MPC to both tra-
jectory planning and tracking control, integrating them using
the predicted state sequence as reference input. Hang et al. [17]
develop a Stackelberg game-based decision-making model
considering diverse driving behaviors, integrate it with MPC
motion planning, and formulate a multi-constraint closed-loop
optimization problem. However, existing MPC-based methods
still require individual decision-making inputs to construct
reference states or reference control inputs, which makes it
difficult to seamlessly integrate optimal decision-making with
motion planning, resulting in reduced flexibility and posing
challenges when handling dynamic scenarios. Recent advances
in learning-based methods, such as reinforcement learning [18]
and imitation learning [19], have made significant progress in
integrated motion planning, primarily by leveraging end-to-
end (E2E) architectures to unify technical pipeline. However,
these methods still lack clear and interpretable mechanisms to



ensure safe and robust maneuvers of AVs.
Ensuring safety is paramount for real-world AV appli-

cations [20]. Classical MPC approaches directly use hard
constraints to handle obstacles avoidance, which may result in
solution failures or conservative behavior [16]. APF is widely
used to reduce the collision risk with surrounding vehicles
(SVs) through soft constraints or gradient solution [21]. Main-
stream approaches combine MPC with APF to improve both
safety and traffic efficiency [20]–[23]. For instance, Zuo et
al. [22] integrate lane decision-making into MPC using lane-
associated APF as a cost term. Abdul et al. [23] assess the
collision risk and optimize trajectory through MPC. However,
most APF approaches neglect the non-uniform distribution of
the driver’s attention, which can lead to bias or overestimation
in driving risk assessment, potentially resulting in either overly
risky or overly conservative driving behavior decisions.

In this paper, we propose an integrated motion plan-
ning framework based on Hybrid Model Predictive Control
(HMPC) that incorporates logical constraints of lane-change
behaviors and risk assessment to jointly solve the decision-
making and motion planning problem in a unified optimal
control problem, as shown in Fig. 1. This framework enables
seamless information flow across modules and enforces con-
sistent optimization objectives for decision-making, trajectory
planning and motion control modules, ensuring globally con-
sistent. Our previous work [24] established a basic HMPC
structure for integrated motion planning. Building upon that
foundation, this paper further introduces an asymmetric risk
field, which provides more informative guidance for intrinsic
discrete lane-level behavior optimization. In addition, compre-
hensive experimental studies including simulation tests, dataset
validations tests and real-world implementations are conducted
to demonstrate the effectiveness of the proposed approach. The
main contributions are as follows:

• An HMPC-based integrated motion planning framework
is proposed. It integrates discrete logic decision-making
and continuous motion planning in a single optimal con-
trol problem without additional semantic decision module
and seamlessly achieves efficient and safe driving.

• An asymmetric risk field is introduced to guide intrin-
sic discrete behavior optimization. By considering the
characteristics of the human driver’s field of view and
observational attention during driving, the risk field is
dynamically adjusted for more reasonable representation.

• The mixed logic dynamic system is formulated by in-
corporating discrete logical constraints into the optimiza-
tion problem to adapt to discrete lane-level behavioral
decisions, where both discrete lane change behavior, and
continuous trajectory states and control command can be
optimized simultaneously.

• Comprehensive validation including MATLAB simula-
tion, nuPlan benchmark validation and cloud-controlled
real vehicle tests are performed to verify the algorithm’s
ability to identify overtaking opportunities and improve
driving efficiency and safety. The results demonstrate
the potential capability of integrating decision-making,
trajectory planning and motion control in real AV tasks
by an optimization scheme.
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Fig. 1. Framework of our proposed method. Traffic dynamics are mod-
eled to construct an asymmetric risk field, refined by drivers’ field of view
and overtaking behavior. The HMPC integrates this field into an MIQP-
based framework, jointly generating continuous control commands and
discrete lane-change decisions for seamless motion planning.

The remainder of this article is organized as follows:
Section II presents the fundamentals of HMPC. Section III
develops the asymmetric risk field framework incorporating
surrounding vehicle dynamics and driver attention character-
istics. Section IV formulates the motion planning problem
through an HMPC perspective, detailing propositional logic
derivation, MLD model conversion, constraint generation, and
objective function design. Simulation analyses and experimen-
tal real-world validation are presented in Section V and VI,
respectively. Finally, Section VII concludes the article.

II. HYBRID MODEL PREDICTIVE CONTROL

A. MLD Model Construction

The Mixed Logic Dynamic (MLD) system [25] formulates
the hybrid system dynamics by encoding qualitative system
knowledge and operational constraints through logical propo-
sitions. Leveraging Big-M modeling [26], it establishes formal
equivalences between discrete Boolean variables and contin-
uous variables, enabling unified mathematical representations
via mixed-integer linear inequalities. Specifically, define E =
[x ≤ 0] and introduce a Boolean variable δ ∈ {0, 1}. When the
proposition E = true, δ is set to 1. Using Big-M modeling, it
can be derived that when the proposition [x ≤ 0] ⇔ [δ = 1] is
true, the variable x satisfies the following linear inequalities:{

Mδ ≤M − x,
(ε−m)δ ≥ ε− x

(1)

where δ ∈ B, ε is a small positive value, M represents the
upper bound of x, and m is the lower bound of x. Similar to
the above process, discrete linear dynamical systems can be
converted into a MLD model:

xk+1 = Axk +B1uk +B2δk +B3zk +B5

yk = Cxk +D1uk +D2δk +D3zk +D5

E2δk + E3zk ≤ E4xk + E1uk + E5

, (2)

where the state vector x = [xc, xl], xc ∈ Rnc representing
the continuous components and xl ∈ {0, 1}nl are the discrete
components of x, n ∆

= nc+nl represents the dimension of the
state variables. Similarly, the input u is divided as [uc, ul] ∈
Rmc × {0, 1}ml and the output y is [yc, yl] ∈ Rpc × {0, 1}pl ,



m and p are the dimension of control variables and output
variables, respectively. z = xδ is the auxiliary real variables.

B. HMPC Optimal Control Framework

For motion planning, we use discrete variables to encode
behavioral semantics and continuous variables to control the
vehicle’s dynamics. By establishing the logical relationships
between the decision semantics and vehicle dynamics, an
MLD model is constructed and used as a predictive model for
receding horizon optimization, resulting in an HMPC optimal
control framework with obejective function J :

min J =
∑N−1

k=0 y
⊤
k Qyk + u⊤k Ruk

s.t. xk+1 = Axk +B1uk +B2δk +B3zk
yk = Cxk +D1uk +D2δk +D3zk +D5

E2δk + E3zk ≤ E4xk + E1uk + E5

xinit = x0

(3)

where k ∈ {0, ..., N − 1} is prediction step, N is prediction
horizon. If the objective function is quadratic and the weight
matrix Q is semi-positive definite and R is positive definite,
the HMPC optimization problem can be turned into a MIQP
problem for solution:

minξ
1
2ξ

⊤Hξ + x⊤k Fξ
s.t. Gξ ≤W + Sxk

, (4)

where G denotes the constraint matrix associated with the
optimization variable ξ. S represents the matrix related to xk.
The optimized vector ξ consists of the control variable uk,
discrete auxiliary variable δk, and auxiliary real variable zk:

ξ = [u0, . . . , uN−1︸ ︷︷ ︸
mixed−integer

, δ0, . . . , δN−1︸ ︷︷ ︸
binary

, z0, . . . , zN−1︸ ︷︷ ︸
real

]⊤
. (5)

III. ASYMMETRIC RISK FIELDS

To guide intrinsic behavioral decision in the HMPC motion
planning, a asymmetric risk field is designed considering two
aspects: 1) the dynamic motion of SVs; 2) the observational
characteristics of SV drivers.

A. Fundamental Dynamic Risk Fields

Primarily, we use a two-dimensional Gaussian distribution
to construct their static risk field:

N(xego | µ, ε) = Aobs

2π
√

|ε|
e(−

1
2 (xego−µ)⊤ε−1(xego−µ)), (6)

where N denotes the risk distribution function, Aobs represents
the obstacle coefficient, xego = (s, d)⊤ is the EV’s position in
the Frenét coordinate system, and µ, ε the mean and covariance
of the 2D probability density function (PDF). During driving,
changes in speed, acceleration, and heading angle affect driv-

ing risk. Based on these factors, the dynamic risk field Updf,k

generated by SVs is constructed as follows:

Updf,k = w1 C1e
−0.5×f(n)

o︸ ︷︷ ︸
N1

+w2 C2e
−0.5×g(n)

o︸ ︷︷ ︸
N2

C1 =
Aobs

2π
√
ε1
, C2 =

Aobs

2π
√
ε2
,

fo
(n) = F⊤ε1

−1F, go
(n) = G⊤ε2

−1G,

ε1 =

[
(Ssafe −∆s

(n)
k )2 0

0 (Dsafe −∆d
(n)
k )2

]
,

ε2 =

[
Ssafe

2 0
0 Dsafe

2

]
,F =

[
sk − ŝ

(n)
k

dk − d̂
(n)
k

]
,

G =

[
sk − (ŝ

(n)
k + sign(a

(n)
k,s)∆s

(n)
k )

dk − (d̂
(n)
k + sign(a

(n)
k,d)∆d

(n)
k )

]
, (7)

where w1 ∈ [0.5, 1], w1 + w2 = 1, N1 and N2 are two
independent 2D Gaussian PDF, Updf,k represents the dynamic
risk fields of SVs at time k, w1 and w2 denote the weights
of the two risk fields, and ε1 and ε2 are the covariance
matrices. ŝ(n)k , d̂(n)k , a(n)k,s , and a(n)k,d represent the longitudinal
displacement, lateral displacement, longitudinal acceleration,
and lateral acceleration of the n-th obstacle, respectively. Ssafe
and Dsafe denote the desired safe distances between the EV
and SV in the longitudinal and lateral directions, respectively,
which primarily determine the lengths of the major and minor
axes of the risk field ellipse in the covariance matrix of the
risk distribution function:{

Dsafe = wd(Dmin +∆v2d/2ac),
Ssafe = ws(Smin + vegoTsafe +∆v2s/2ac),

(8)

where ws and wd represent the intensity of the safe distances.
Smin and Dmin denote the minimum safe distances between
SVs and EV in the longitudinal and lateral directions, respec-
tively. vego represents the EV’s speed, Tsafe is the safe time
interval, ∆vs and ∆vd are the relative velocities between SVs
and EV, and ac denotes the acceleration of EV.
∆s

(n)
k and ∆d

(n)
k represent the relative deviations of the risk

field for the n-th obstacle vehicle at time k:{
∆q

(n)
k =

Sb,q

e−p(|aq|−0.5aq,max)
, (q = s, d),

Sb,q = kqSq,
(9)

where Sb,q is the adjustable maximum deviation in each
direction of the Frenét coordinate system, aq,max denotes the
maximum acceleration/deceleration of the SV, p is a positive
coefficient and kq is the mass coefficient. By combining N1

and N2, Updf,k can consider both static geometric safety con-
straints and dynamic collision risks simultaneously, enabling
the HMPC to plan more proactively and safely.

B. Observational Modification

Solely considering the vehicle’s motion may overestimate
the risk. In real-world driving scenarios, when the EV ap-
proaches or may influence SVs, SV driver typically take proac-
tive avoidance actions, thereby reducing potential risk [28].
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Fig. 2. (a) Area of Interest (AOI): Gaze points (green) are divided into
four AOIs: windshield AOIw, left and right rear-view mirrors AOIL,R,
and dashboard AOID, reflecting attention distribution. (b) Heat map
of gaze points distribution, with color indicating gaze density on a
logarithmic scale [27].

TABLE I
ATTENTION INTENSITY OF DIFFERENT AREAS OF INTEREST

CALCULATED FROM GAZE POINT FREQUENCY

AOIw AOIL AOIR AOID

Attention Intensity 0.58 0.21 0.12 0.09
Risk Intensity kview 0.42 0.79 0.88 0.91
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Fig. 3. Asymmetric risk field based on the driver’s FOV. X and Y
represent the coordinate axes of the SV’s coordinate system, lroi and
wroi indicating the driver’s region of interests (ROI) in the longitudinal
and lateral directions, which are set manually.

Therefore, we propose an observational risk field that inte-
grates human driver attention patterns, leveraging an open-
source eye-tracking dataset from Delft University of Tech-
nology [27]. This dataset captures drivers’ visual attention
allocation during normal driving and lane-changing maneuvers
in simulated environments, offering insights into collision-
avoidance behaviors.

1) Modification based on Field of View (FOV): The FOV
includes the forward view through the windshield and side
windows and the side rear view through the exterior mirrors,
but excludes the interior rear view mirror, which has minimal
impact on the asymmetric risk field model. As demonstrated
in Fig. 2(b), gaze points are more concentrated on the left,
indicating a leftward attention bias. This reduces the risk when
the EV is to the left of the SV, compared to when it is to the
right. Based on the driver’s FOV characteristics, we designed
the asymmetric risk field as illustrated in Fig. 3. The relative
distance dview and angle θk of EV in the coordinate system
of SV at the k-th moment are denoted as:

dview =

√
(xs,k − (xo,k + hx,k))

2
+ (yd,k − (yo,k + hy,k))

2
,

θk = arctan 2(yd,k − (yo,k + hy,k), xs,k − (xo,k + hx,k)),
(10)
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Fig. 4. (a) Attention distribution of drivers when overtaking and being
overtaken. xoverlap represents the position where the EV and SV over-
lap in the driving direction. (b) The curves of driver attention variations
during overtaking maneuvers. Solid lines correspond to the mean and
shaded regions correspond to 95% confidence interval.

where xo,k and yo,k represent the SV’s center of gravity (CG)
in the coordinate system of SV and hx,k and hy,k represent
SV’s driver position in the coordinate system of SV. xs,k and
yd,k represent EV’s position in the coordinate system of SV.
Determine if the EV is within the SV’s visible sector based
on dview and θk, and represent the result as a boolean δview:

δview=


dview ≤ lroi, θk ∈ [θfb, θfe]

dview ≤ lroi

√
(1 +

hy,k

wroi
)(1− hy,k

wroi
) , θk ∈ [θlb, θle]

dview ≤ lroi

√
(1 +

wh,veh

wroi
)(1− wh,veh

wroi
), θk ∈ [θrb, θre]

view ∈ {front, left, right}
(11)

where θfb and θfe are the starting and ending angles of the
forward visible sector, θlb and θle are for the left-side visible
sector, θrb and θre are for the right-side visible sector, view
represents the distance, and wh,veh is the vehicle’s half-width.

With the risk intensity of the ordinary risk field normalized
to 1, the final risk intensity kview is defined as 1 minus the
corresponding attention intensity (as listed in Tab. I). When
considering only the FOV, the risk field can be expressed as

Uof,k = kview · Updf,k, view ∈ {front, left, right}. (12)

2) Modification based on Overtaking Behavior: We statis-
tically analyze the distribution of driver attention during over-
taking maneuvers from the dataset, as shown in Fig. 4. The dis-
tributions approximately follow a normal distribution in both
scenarios but differ significantly: when overtaken, the driver’s
attention is more focused before passing, while when overtak-
ing, the attention peaks at overlap with higher variance. When
SV is overtaking, assuming the longitudinal position of SV is
xobs, the driver’s attention follows a normal distribution with a
certain mean µovertake = xobs− (lveh/2 + lobs/2) and variance
σovertake = (lveh/2 + lobs/2) /2. Similarly, µovertaken = xobs
and σovertaken = lveh/2+ lobs/2 when SV is overtaken. Hence,



Fig. 5. Kinematic vehicle model in the Frenét coordinate system.

the attention intensity function of the two situations are:

fatt = (2πµ2
type)

− 1
2 exp

[
−
(x− µtype)

2σ2
type

]
, (13)

where type ∈ {overtake, overtaken}, lveh and lobs are the
length of EV and SV, respectively.

In this paper, the risk from the SV to the EV is inversely
proportional to the driver’s attention of the SV. Thus, the atten-
tion intensity needs to be inverted and scaled. The attention
normal distribution functions for both overtaking and being
overtaken are flipped vertically around the x-axis, then shifted
upwards according to the original peak, and finally normalized.
The expression for the risk intensity function is as follows:

frisk = (−fatt +
1

σ
√
2π

)/
1

σ
√
2π

(14)

Combined with (12), the final observational risk field is:

Uo,k = kview · frisk · Updf,k (15)

where view ∈ {front, left, right}. Finally, we can obtain
the total asymmetric risk field:

UAPDF,k = 0.5× (Updf,k + Uo,k) (16)

IV. HMPC-BASED INTEGRATED MOTION PLANNING

A. Vehicle Models

1) Hybrid Prediction Model of EV: The prediction model
for HMPC is built upon a nonlinear single-track model. The
model assumes no slip occurring between the tires and the
road surface and is capable of predicting the vehicle’s motion
state with high accuracy when the lateral acceleration is lower
than 0.4g [29], as illustrated in Fig. 5. Additionally, since
vehicles typically do not experience sudden, excessive steering
inputs during normal driving, small-angle approximations are
generally applied to the slip and steering angles. Under this
assumption, we transform the kinematic single-track model
into the Frenét coordinate system:


ṡ (t) = v(t)

1−κ(s)l(t) cos
(
φ (t) + tan−1

(
lr tan δf (t)

lf+lr

))
ḋ (t) = v (t) sin

(
φ (t) + tan−1

(
lr tan δf (t)

lf+lr

))
φ̇ (t) = v(t)

lr
sin

(
tan−1

(
lr tan δf (t)

lf+lr

))
− κ (s) ṡ (t)

v̇ (t) = a (t)
(17)

where s and d represent the longitudinal and lateral positions
of the vehicle’s CG in the Frenét coordinate system, ψ is the
inertial heading angle, v is the vehicle’s longitudinal velocity,
lf is the distance from the CG to the front axle, lr is the
distance from the CG to the rear axle, and κ denotes the
curvature of the reference line at the point closest to the
vehicle’s current position. The front steering angle δf and
longitudinal acceleration a are treated as the control inputs.

Since the lane is a integer variable and cannot be differenti-
ated, it cannot directly integrated into the continuously vehicle
kinematic model. Therefore, we discretize vehicle model using
forward Euler, treating the lane as a discrete state variable. The
discrete vehicle kinematic model is then augmented to derive
the hybrid prediction model of the EV in the Frenét coordinate
system, which is the MLD model of the EV:

sk+1 = sk +
(

vk
1−κkdk

cos
(
φk + arctan

(
lr tan δf,k

lf+lr

)))
Ts

dk+1 = dk +
(
vk sin

(
φk + arctan

(
lr tan δf,k

lf+lr

)))
Ts

φk+1 = φk +
vk
lr

sin

(
arctan

(
lr tan δf,k
lf + lr

))
Ts

− κk
vk

1− κklk
cos

(
φk + arctan

(
lr tan δf,k
lf + lr

))
Ts

vk+1 = vk + akTs

lk+1 = lk +∆lk
(18)

The state vector of the system is defined as xk =
[sk, dk, φk, vk, lk]

⊤, and the control input vector of the system
is uk = [δf,k, ak,∆lk]

⊤. The lane variable lk+1 at the next
moment is only related to the lane at the previous moment
and the lane decision logic ∆lk.

2) Prediction Model of SVs: In order to avoid collisions
and make timely lane change maneuvers, a prediction model
of SVs is needed. In this paper, a point mass kinematic model
that assumes constant velocity is employed to describe the
future motion of SVs, as expressed by the following equation
:

xobj,k+1 = Aobjxobj,k +Bobjuobj,k (19)

Aobj =


1 0 0 T 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 ,Bobj =


0 0
0 0
0 0
0 0
0 0


where xobj,k = [sobj,k, dobj,k, φobj,k, vobj,k, lobj,k]

⊤ represents
the state of the dynamic obstacle vehicle, including the lon-
gitudinal position sobj,k, lateral position dobj,k, heading angle
φobj,k, velocity vobj,k, and current lane lobj,k, input vector
uobj,k = [δobj,f , aobj ].

B. Constraints
The constraints are mainly composed of three parts: logic

constraints, system dynamics equality constraints, and state
and control variable constraints. The system dynamics equality
constraints are derived from (18). The bounds of the variables
are defined depend on road boundaries, safety:

|φk| ≤ φlimit, 0 ≤ vk ≤ vlimit

|δf,k| ≤ δf,limit, adec,limit ≤ ak ≤ aacc,limit
(20)
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Fig. 6. Safe distance for vehicle lane changes.

Before introducing the logic constraints, we define the
concept of safe distance dsafe. dsafe ensures that during over-
taking, the EV will not collide with preceding or subsequent
vehicle in the target lane, as illustrated in Fig. 6. Safe distance
is calculated based on the vehicle speed, Time to Collision
(TTC), and maximum deceleration:

dsafe(k) = vrear × TTCrear + drearc (k)− dfrontc (k)
duc (k) = vu(k)× Ts × nu(k)

−vur (k)× Ts × nu(k)(nu(k)+1)
2

vur (k) = bmax × Ts
nu(k) = vu(k)/v

u
r (k)

u = [front, rear]

(21)

where u = [front, rear] indicate that vehicle u is the front
or rear vehicle when calculating dsafe. If dsafe between the
EV and the leader vehicle is calculated, then front = leader
vehicle, rear = EV. TTCrear is the TTC of the rear vehicle,
vu is the velocity of the vehicle u, Ts is the sample time of
the system and bmax is the maximum deceleration.

Based on the safe distance, we construct the logical con-
straints for the HMPC. We consider vehicles driving in a
multi-lane environment L = {1, 2, ..., L}, where L is the total
number of lanes. Treat the EV as controlled plant, continuous
variable as acceleration a and discrete variable as lane l.
To ensure the EV operates safely in this environment, it is
specified that the vehicle can only switch to an adjacent lane
when changing lanes, and cannot change to a non-adjacent
lane. Additionally, the speed must remain within the limits:

0 ≤ v(k) ≤ vmax,∀k ∈ Tp
max{1, l(k)− 1} ≤ l(k + 1) ≤ min{L, l(k) + 1},∀k ∈ Tp

(22)
Meanwhile, the longitudinal and lateral distances between

the EV and the j-th SV are defined as follows:

dj(k + 1) = dj(k) + Ts(vj(k)− v(k)),∀k ∈ Tp
∆lj(k) = lj(k)− l(k) ∈ {−L+ 1, L− 1},∀k ∈ Tp

(23)

where Tp = {1, 2, ...Np} is the prediction horizon.
Based on the above definitions, the propositional logic for

the EV’s lane-changing decision is designed as follows: When
EV and SV are in the same lane, the distance between the two
vehicles must be greater than the safe distance dsafe:

[∆lj(k) = 0]︸ ︷︷ ︸
(A)

∧ [|(dj(k))| ≥ 0]︸ ︷︷ ︸
(B)

⇒ [|dj(k)| ≥ dsafe]︸ ︷︷ ︸
(C)

. (24)

Based on the basic rules of logical conversion, (24) can be
transformed into mixed integer inequalities. The details are
provided in the appendix.

C. Objective Functions
The optimization objectives of all modules are integrated

into a unified objective function.
1) Decision-making Relative Objective: To enable lane-

aware lateral displacement adjustment, the desired lateral
distance is defined as the product of the target lane index lk
and the lateral distance w between the current and target lane
centerlines. Therefore, the lateral distance objective function
Jd,k and the lane objective function Jl,k at the k-th time step
can be expressed as:

Jd,k = qd(dk − lkw)
2
, Jl,k = ql(lk − lref,k)

2 (25)

where q(·) is the weight of corresponding term. lref,k is the
reference lane index, which is set to 0 by default and can be
replaced with the corresponding value when there is external
semantic decision input.

Additionally, the asymmetric risk field is included as part
of the optimization objective JU,k =

∑Nj

1 UAPDF,k. The
risk fields of Nj SVs are summed to represent the overall
environmental risk, which guides the vehicle’s lane change
decisions.

2) Planning Relative Objective: It is primarily used to
guide the state transitions of the vehicle during motion plan-
ning, with a focus on speed and heading angle:

Jφ,k = qφφ
2
k, Jv,k = qv(vk − vref,k)

2 (26)

where vref,k is the expected speed. Typically, the expected
speed is associated with the curvature of the reference path.
The greater the curvature, the more restricted the vehicle’s
acceleration, resulting in a lower expected speed.

3) Control Relative Objective: Since small variations in
the system’s control inputs help ensure the safety of the
automated vehicle during its motion, the objective functions
for the steering angle and acceleration are defined as follows:

Jδf ,k = rδf δ
2
f,k, Ja,k = raa

2
k (27)

where rδf and ra are the weight of corresponding term.

D. HMPC Problem Formulation and Sulution
The full optimal control problem (OCP) for the integrated

motion planner is formulated as follow:

J =
∑Np

k=1 ∥xk − xref∥2Q +
∑Np−1

k=0 ∥uk∥2R + JU

=
∑Np

k=1 (Jd,k + Jφ,k + Jv,k + Jl,k)

+
∑Np−1

k=0

(
Jδf ,k + Ja,k

)
+ JU

(28)

s.t.



System dynamic : (18)

Continuous variable constraints : (20), (22), (23)
Logical constraints : (24)
xk ∈ Ξ,∀k ∈ {1, 2, . . . , Np}
uk ∈ U ,∀k ∈ {0, 1, . . . , Np − 1}

(29)
where Ξ and U represent the feasible sets of system states and
control inputs, respectively. Q and R are the positive semi-
definite weight matrices for the system state vector and control
input vector, respectively. The nonlinear optimization problem
will be solved using the Gurobi solver.
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V. SIMULATION VERIFICATION

A. Numerical Simulation

To validate that the automated vehicle can safely perform
overtaking maneuvers without compromising traffic efficiency,
we use MATLAB to set up two numerical simulation. The
scenario involves overtaking on a straight road with multiple
SVs. The lane width w = 3, road length lroad = 500, and
all vehicles are modeled with the same rectangular shape.
The vehicle parameters include lveh = 2.5, wveh = 1.5, and
lf = 1.5, lr = 1.0. The rightmost lane is defined as lane 0,
with lane numbers increasing from right to left. The coordinate
axis is aligned with the centerline of lane 0, and the axis
originates from the starting point of the road for lane 0, as
depicted in Fig. 7. The set of simulation parameters is listed
in Tab. II. In the following, we compare the proposed HMPC
method with and without semantic decision-making, and the
classical MPC motion planning method with a hierarchical
architecture: the upper layer of classical MPC relies on the
aforementioned safe distance for semantic decision-making,
while the lower layer integrates planning and control, directly
outputting control commands. For brevity, we refer to these
methods as HMPC and MPC.

TABLE II
SET OF SIMULATION PARAMETERS.

Parameter Description Value Unit

Ts Sampling time 0.1 s
Np Prediction horizon 10 -
Nj Number of surrounding vehicles 2 -
Q Output weight diag(10,1,5,1) -
R Input weight diag(1,5,1,...,0) -

TTC Time to collision 1 s
bmax Maximum deceleration 4 m/s2

v, v Velocity bounds [0, 35] m/s
a, a Acceleration bounds [−4, 4] m/s2

l, l Lane bounds [0, 1] -
δf , δf Steering wheel bounds [−0.5, 0.5] rad

w1, w2 Weight of Dynamic risk field 0.7, 0.3 -
θfb, θfe Angle of driver’s FOV (front) [−80◦, 60◦] deg
θlb, θle Angle of driver’s FOV (left) [161◦, 177◦] deg
θrb, θre Angle of driver’s FOV (right) [−177◦,−166◦] deg

1 θ(·) are designed based on Chinese standard [30].

In the first case, EV is initialized with x0 = [0, 0, 0, 28, 0]
⊤

and is required to maintain its desired longitudinal velocity of
28 m/s. Two SVs are considered in this configuration: SV1 is
driving in lane 0 at a lower speed xSV 1

0 = [100, 0, 0, 15, 0]
⊤,

while SV2 is driving in front of EV and SV1 in lane 1 with
a higher speed than SV1 but also a lower speed than EV
xSV 2
0 = [130, 3, 0, 21, 1]

⊤. The EV needs to pass through
the gap and overtake the slower vehicle in front in order to
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Fig. 8. Results of simulation experiment case 1. (a)-(c) Vehicle trajec-
tory during an overtaking maneuver with key moments indicated and
corresponding longitudinal speed profile. (d) Comparison between the
semantic decision and the HMPC decision (with the semantic decision).

improve its traffic efficiency. The test results are illustrated
in Fig. 8. When utilizing pure HMPC, the EV first maintains
its current lane and performs a timely lane-change maneuver
when blocked by SV1 (below). Meanwhile, by considering
both decision-making and motion planning simultaneously,
HMPC effectively identifies the optimal overtaking opportu-
nity, completing the overtaking maneuver with sufficient space
between SV2 (above) and SV1, without losing speed. MPC
with semantic decision-making shows a contrasting behavior.
Since its decision module operates independently, it may not
determine the optimal overtaking timing, causing the vehicle to
slow down and follow SV2 for a period before completing the
overtaking maneuver. Moreover, as discussed in Section IV-C,
HMPC is capable of integrating external semantic decision-
making to reschedule motion planning. When using the same
semantic decision as MPC, HMPC did not immediately exe-
cute the lane change as suggested by the semantic decision.
Instead, it re-optimized the timing of the lane change, enabling
the vehicle to complete the maneuver without losing speed.

The scenario in case 2 is similar to that in case 1, but more
complex. In case 2, SV2 xSV 2

0 = [70, 3, 0, 21, 1]
⊤ lags behind

SV1 xSV 1
0 = [100, 0, 0, 16, 0]

⊤ and gradually overtakes it.
As a result, as SV1 moves slowly and SV2 approaches from
the adjacent lane behind, the EV x0 = [0, 0, 0, 28, 0]

⊤ must
decide between slowing down and following SV1 or changing
lanes to overtake. Test results demonstrating these results are
presented in Fig. 9. When using pure HMPC, the EV first
detects the potential obstruction by SV1 and applies a lane
change maneuver to follow SV2 to achieve a higher speed.
Once a safe gap between SV1 and SV2 is confirmed, the EV
seamlessly completes the overtaking maneuver. In contrast,
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Fig. 9. Results of simulation experiment case 2. (a)-(c) Vehicle trajec-
tory during an overtaking maneuver with key moments indicated and
corresponding longitudinal speed profile. (d) Comparison between the
semantic decision and the HMPC decision (with the semantic decision).

hierarchical MPC prioritizes maintaining safe distances, delay-
ing lane changes until a sufficient gap between SV1 and SV2
is available. This causes the EV to slow down and miss the
optimal lane change timing, resulting in a loss of speed. In this
case, since the semantic decision in MPC cannot effectively
capture the optimal lane change timing, HMPC (with semantic
decision) makes a different choice that better minimizes the
EV’s speed loss, as shown in Fig. 8(d). The final result is sim-
ilar to pure HMPC, indicating that the proposed approach not
only optimizes external semantic decisions comprehensively
but also demonstrates good robustness.

B. Validation on NuPlan Benchmark
In view of the simplicity and fixed nature of the scenarios in

Sec. V-A, which renders it challenging to simulate the complex
variations of traffic flow in real-world scenarios, we conduct
more comprehensive testing based on nuPlan [31], a large-
scale closed-loop planning benchmark for autonomous driving.

In our simulation setup, SVs are controlled using a log-
replay mode with no reaction (NR) to the EV. For algorithms
that generate trajectories without direct control commands,
we employ an LQR controller for tracking. EV’s states are
then updated using a kinematic single-track model. We choose
the hierarchical MPC, as described in Sec. V-A, and the
end-to-end imitation learning (IL)-based planning algorithm
PlanTF [32] (the official baseline in nuPlan) as the baseline.
PlanTF is trained on 150,000 scenarios from the nuPlan
dataset, using the vehicle’s trajectory over the past 3 seconds
as input to generate the trajectory for the next 8 seconds.

We evaluate the algorithm in both targeted lane-change
and general multi-scenario tests to quantify not only HMPC’s
performance gains in lane-changing over baselines, as well as

TABLE III
EVALUATION METRICS OF PLANNING ALGORITHM

Metric name Description

NR closed-loop score (NR-CLS) Evaluates the algorithm’s overall perfor-
mance in NR closed-loop scenarios.

Average displacement error (ADE) Average L2 distance deviation between the
EV’s trajectory and the expert trajectory.

Derivable area compliance (DAC) Whether EV stays in drivable area.
Derivable direction compliance (DDC) Whether EV moves along the defined driv-

ing direction in the time domain.
Comfort Whether EV’s lateral/longitudinal accelera-

tion meets the threshold.
Progress along route ratio (PRR) EV’s progress along expert trajectory.
No at-fault collisions (NAC) Whether EV has any at-fault collisions.
Speed limit compliance (SLC) Whether EV follows the map speed limit.
1 All metric scores are normalized to the [0-1] range using official thresholds.

TABLE IV
SIMULATION RESULTS OF THE TEST-LC DATASET

Methods NR-CLS
(↑)

DAC
(↑)

DDC
(↑)

Comf.
(↑)

PRR
(↑)

NAC
(↑)

SLC
(↑)

SR
(↑)

ACT(ms)
(↓)

MPC 0.882 0.833 0.955 0.812 0.791 0.912 0.952 74/100 43
PlanTF 0.633 0.918 0.932 0.863 0.709 0.809 0.940 56/100 152
HMPC 0.911 0.817 0.958 0.823 0.835 0.913 0.954 87/100 77
1 SR stands for the success rate, and ACT is the average computation time per step.
2 The prediction horizon Np for both HMPC and MPC is set to 20.

its generalization capacity. The official nuPlan metrics is used
for evaluation, and the details are listed in Tab. III.

1) Test on Lane Change Scenario: We selected 100 lane-
change scenarios from the nuPlan dataset to construct the
Test-LC set, and the evaluation results are shown in Tab. IV.
HMPC outperforms or matches the other algorithms across
multiple metrics, with its NR-CLS being 3.28% and 43.9%
higher than MPC and PlanTF, respectively. HMPC accounts
for the driver’s FOV and dynamic attention, not merely the
safety distance, resulting in more human-like behavior and
a 5.22% improvement in PRR over MPC. The integrated
planning framework also reduces inter-module error, facili-
tating smoother maneuvers and more successful overtaking
in lane changes. PlanTF performs poorly in these scenarios,
as it fails to capture the underlying causal logic of lane-
changing through IL, resulting in overly conservative lane-
keeping behavior. The scarcity of lane-change instances in
the training data further hinders effective learning of such
maneuvers. Despite a higher computational consumption than
MPC due to solving a MIQP problem integrated with a risk
field, HMPC’s average computation time (ACT) remains under
100 ms, meeting real-time requirements.

We further analyze two typical scenarios. As shown in
Fig. 11, HMPC achieves a smaller ADE than MPC in both
cases, with lane-change timing closer to the expert trajec-
tory. MPC relies solely on safety distance to determine lane
changes, resulting in suboptimal timing and abrupt maneuvers.
In the first case, PlanTF fails to perform the lane change and
exhibit an overly large turning radius. In the second case, while
it has the lowest ADE, the long lane-change distance still poses
potential risks. This is because PlanTF lacks a causal decision
model and depends on historical motion inputs, thus favoring
the maintenance of the current driving state.



(a) (b)

(b)

EV SV Expert traj. Ego traj. Lane Stop line Roadblock

Fig. 10. (a) Merging and Overtaking. The EV needs to perform a right-
turn maneuver to merge into the main road, and then overtake the
leading large vehicle. (b) Multi-Lane Overtaking. The EV need to execute
a right lane-change maneuver and then follow the leader vehicle.

(b)
(a)

(b)

(c)

(d)

(e)

(f)

H
M

P
C

M
P

C
P

la
n
T

F

ADE=0.32

ADE=0.74

ADE=1.21

ADE=0.34

ADE=0.40

ADE=0.25
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2) Test on Multi-Scenario: We selected 7 types of scenario
related overtaking from the nuPlan for evaluation, including
changing lane, high magnitude speed, near multiple vehicles,
high lateral acceleration, following lane with lead, low mag-
nitude speed, and behind long vehicle. To comprehensively
assess HMPC’s generalization ability across diverse driving
conditions and its adaptability to long-tail scenarios, we con-
structed two types of test sets: 1) Test-random: a fixed test set
composed of 20 randomly sampled scenarios from the seven
categories above; 2) Test-hard: A high-difficulty set is formed
by selecting the 20 most challenging scenarios from 100 initial
cases per type, as identified by the poor performance of the
state-of-the-art rule-based planner (PDM-Closed [33]).

As illustrated in Tab. V, HMPC achieved improvements
of 1.12% and 6.25% over MPC and PlanTF, respectively, on
the NR-CLS within the Test-random. By incorporating driver
behavior modeling, HMPC achieves planning closer to expert
behavior and a 3.97% higher PRR than MPC. However, as its
risk field parameters are calibrated from highway data, HMPC
suffers from model mismatch in diverse scenarios, leading to
weaker generalization. Consequently, its DAC and NAC metric
are reduced by 1.90% and 1.04% respectively compared to

TABLE V
SIMULATION RESULTS OF THE TEST-RANDOM AND TEST-HARD

Test Type Methods NR-CLS
(↑)

DAC
(↑)

DDC
(↑)

Comf.
(↑)

PRR
(↑)

NAC
(↑)

SLC
(↑)

random
MPC 0.891 0.833 0.955 0.832 0.781 0.912 0.983

PlanTF 0.848 0.938 0.985 0.803 0.879 0.890 0.960
HMPC 0.901 0.817 0.954 0.833 0.812 0.903 0.985

hard
MPC 0.676 0.781 0.909 0.821 0.677 0.854 0.959

PlanTF 0.757 0.903 0.953 0.772 0.818 0.835 0.923
HMPC 0.690 0.744 0.908 0.816 0.693 0.865 0.954

Control horizon [s]

C
om

pu
ta

tio
n 

tim
e 

[m
s]

10
0

20
0

30
0

40
0

0

Control horizon [s]

C
om

pu
ta

tio
n 

tim
e 

[m
s]

0
10

0
20

0
30

0

Tim
e s

tep
s [

s]

Tim
e s

tep
s [

s]

(a) (b)

Computation Time Tests on MATLAB Computation Time Tests on Python

Fig. 12. Computation time of various control horizons and time steps.
The tests in nuPlan and the real-world are both based on Python.

TABLE VI
COMPUTATION TIME STATISTICS ON DIFFERENT PLATFORM

Test Platform MATLAB
implementation

nuPlan
benchmark

real-world
vehicle

Avg Comp. time (ms) 53.15 31.71 50.74
Min Comp. time (ms) 45.81 27.96 32.02
Max Comp. time (ms) 103.7 62.26 71.11
1 The prediction horizon Np is set to 10 and sampling time Ts = 0.1s.

MPC. Although PlanTF excels in PRR by exhibiting human-
like behavior, its lack of formalized safety constraints in the
end-to-end trajectory results in suboptimal NAC performance.

On the Test-hard benchmark, the NR-CLS of HMPC and
MPC decreased by 23.4% and 24.1%, respectively, compared
to the Test-random benchmark. The performance drop is
primarily due to the complex traffic behaviors in long-tail
scenarios, where the optimization objectives and constraints
are highly coupled, making it difficult for rule-based methods
to solve. In contrast, PlanTF demonstrates better generalization
ability, but its lack of safety constraints results in NAC that
are still 3.40% and 2.12% lower than those of HMPC and
MPC, respectively. Future work will explore physics-informed
learning algorithms to balance generalization ability while
satisfying safety constraints.

C. Sensitivity Analysis on Computation Time
We further perform a sensitivity analysis on the algorithm’s

computation time. The MATLAB and nuPlan simulations were
conducted on an Intel i7-12700H CPU at 2.3 GHz, with each
simulation repeated 5 times under random initial conditions.
The real-world tests (see Sec. VI) employ an Intel i9-9900K
CPU at 3.6 GHz. As shown in Fig. 12, the computation
time increases exponentially with a shorter time step and
a longer control horizon, indicating the need for a trade-
off between temporal resolution and prediction range during
deployment. Therefore, we selected Ts = 0.1s and Np = 10
to balance computational burden and performance. Tab. VI
shows the computation time statistics for different platforms
and numbers of SVs. In all configurations, the average com-
putation time for HMPC remains below 100 ms, with the
worst case slightly exceeding 100 ms, meeting the real-time
motion planning requirement of a 10 Hz update frequency. To
further enhance scalability and real-time performance in more
complex environments, future work will focus on reducing
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Fig. 13. (a) Experiment vehicle. (b) Cloud-controlled simulated vehicle.
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Fig. 14. (a) Two-lane overtaking scenario. (b) Three-lane overtaking
scenario.

the computational complexity of the algorithm. In addition,
implementing HMPC on a dedicated hardware platform is
expected to provide further computational gains.

VI. TEST ON REAL-WORLD ROADS

Based on our previous work [34], we validate our algo-
rithm using the cloud-controlled testing framework built at
Tongji University’s Smart Networked Automobile Testing and
Evaluation Base. As illustrated in Fig. 13, the experiment
integrates an Experiment Vehicle (ExV), which act as the
EV, with an cloud-based intelligent connected vehicle con-
trol system for real-world validation. The cloud-based host
simultaneously controls both the ExV and cloud-controlled
simulated vehicles (CSVs), where motion planning algorithms
are deployed. The CSVs act as SVs, transmitting real-time
localization data to the cloud host to provide ground-truth
positioning for the ExV. After motion planning is employed
in the cloud, control commands are sent to the ExV via
the Message Queuing Telemetry Transport (MQTT) protocol
to enable vehicle control. The ExV features a drive-by-wire
chassis system, controlled via CAN bus commands. The ExV
is also equipped with a high-precision integrated positioning
system for accurate pose estimation, along with five LiDARs
and three cameras to detect and predict static and dynamic
obstacles. During testing, real-time chassis pose and status
data were uploaded to the cloud host via a 5G communica-
tion module, while control commands were transmitted back
through the same channel. The Vehicle Control Unit (VCU)
executed steering, acceleration, and braking actions via CAN
bus communication, ensuring closed-loop control.

A. Case 1: Two-lane Overtaking Scenario
In the first case, the EV begins with an initial velocity

of 0 km/h and gradually accelerates to the desired velocity
of 50 km/h. The leader vehicle SV1 is positioned 50 meters
ahead in the same lane as the EV, moving straight at 16 km/h,
while SV2 is situated 45 meters ahead in the left adjacent
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Fig. 15. (a) Vehicle trajectory visualization. (b) Results of real-world
test, shown from top to bottom, illustrate the EV’s velocity, longitudinal
acceleration as, lateral acceleration ad, steering wheel angle, and lateral
displacement during the overtaking process over time.
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Fig. 16. (a) Vehicle trajectory visualization. (b) Results of real-world
test, shown from top to bottom, illustrate the EV’s velocity, longitudinal
acceleration as, lateral acceleration ad, steering wheel angle, and lateral
displacement during the overtaking process over time.

lane, traveling straight at 10 km/h. The designed scenario is
depicted in Fig. 14(a). As shown in Fig. 15, the EV accelerates
for the first 5 s, then decelerates while following SV1 and
waiting for a suitable overtaking opportunity. Once the gap
between SV1 and SV2 is sufficient for a safe overtaking
(around 16 s), the EV promptly initiates the lane change
and accelerates to overtake SV1. These results verify that the
EV can successfully complete the lane change and overtaking
maneuvers when there are other slow SVs interfering.

B. Case 2: Three-lane Overtaking Scenario

Case 2 involves a three-lane curved road. The EV starts
in the middle lane with an initial velocity of 0 km/h, then
gradually accelerates to 36 km/h. SV1 is 30 meters ahead of
the EV in the longitudinal direction, traveling at 15 km/h in
the left lane. SV2 is in the same lane as the EV, 20 meters
ahead, traveling at 12 km/h. The designed scenario is shown
in Fig. 14(b). The trajectories of the EV and SVs are shown
in Fig. 16(a). Considering the risk zone of the surrounding
vehicles, even though SV2 is faster and has more space behind
it, the repulsive forces of both SVs will still cause the EV
to change lanes and overtake in the lane without obstacles,
thereby avoiding unnecessary lane changes.



VII. CONCLUSION

In this article, a motion planning framework based on hybrid
model predictive control is proposed to achieve seamless
overtaking maneuvers. By integrating discrete logic decision-
making and continuous motion planning in a single optimal
problem, the approach enables more fluid and adaptable
motion planning while still supporting extended access to
semantic decisions. A novel asymmetric risk field considering
human driver’s attention feature is also incorporated into
intrinsic discrete behavior optimization. Comprehensive val-
idation is performed, including MATLAB simulation, nuPlan
benchmark, and cloud-controlled real-world tests. The results
demonstrate our algorithm’s capability to identify overtuning
opportunities, improve driving efficiency and safety, and show-
case its potential for integrating decision-making, trajectory
planning, and motion control in real autonomous driving tasks
through an optimization scheme. Future work includes further
investigating long-term performance and addressing prediction
uncertainty caused by measurements to account for more
complex scenarios.

APPENDIX

CONVERSION OF LOGICAL CONSTRAINTS

In this section, we illustrate the details of transforming (24)
into mixed integer inequalities. In order to represent the logical
relations [∆lj(k) = 0] with Boolean variables, introduce
auxiliary variables δj,k to make:

[∆lj(k) ≤ 0]︸ ︷︷ ︸
(A1)

∧ [∆lj(k) ≥ 0]︸ ︷︷ ︸
(A2)

⇔ [δj,k = 1]︸ ︷︷ ︸
(A3)

. (A.1)

Then, transform the (A.1) into mixed integer inequalities:

(A1) :

{
Mδj1,k ≤M −∆lj(k),

(ε−m)δj1,k ≥ ε−∆lj(k).
(A.2a)

(A2) :

{
−mδj2,k ≤ ∆lj(k)−m,

(M + ε)δj2,k ≥ ∆lj(k) + ε.
(A.2b)

(A3) :

 −δj1,k + δj3,k ≤ 0,
−δj2,k + δj3,k ≤ 0,

δj1,k + δj2,k − δj3,k ≤ 1.
(A.2c)

Similarly, the remaining part of (24) is transformed in the
same way:

(B) :

{
−mδj4,k ≤ dj(k)−m,

(M + ε)δj4,k ≥ dj(k) + ε.
(A.3a)

(A ∧B) :

 −δj3,k + δj5,k ≤ 0,
−δj4,k + δj5,k ≤ 0,

δj3,k + δj4,k − δj5,k ≤ 1.
(A.3b)

Then, [|dj(k)| ≥ dsafe] can be rewritten as:

δj5,k(dj(k)− dsafe) ≥ 0, (A.4)

which is a nonlinear constraint, we can define new auxiliary
real variables δj6,k = δj5,kdj , subject to:{

dminδj5,k ≤ δj6,k ≤ dmaxδj5,k,
−dmax(1− δj5,k) ≤ δj6,k − dj ≤ −dmin(1− δj5,k).

(A.5)
Finally, we can obtain linear safety constraint:

δj6,kdj(k)− δj5,kdsafe ≥ 0. (A.6)
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