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Abstract— Reinforcement Learning (RL) has become a po-
tential method for autonomous driving to adapt to complex
driving environments with high flexibility. However, the popular
RL paradigm directly outputting the vehicle control commands
makes the future motion with fluctuation. To improve the
driving behavior stability of RL method while ensuring the
motion flexibility, this paper proposes a stability enhanced hier-
archical reinforcement learning method based on parameterized
trajectory action (RL-PTA). It offers feasible driving path in
the long horizon and real-time control commands in the short
horizon simultaneously. The RL agent actively contributes to
path generation with discrete-continuous hybrid parameter ac-
tions, and the parameterized action space also ensures optimal
consistency of the hybrid output. The experiment results show
that the proposed method can generate flexible and stable lane-
change driving behavior, thereby improving the efficiency and
safety for autonomous driving.

I. INTRODUCTION

Decision-making and control directly affect the safety and
flexibility of autonomous driving, which is considered the
brain of autonomous driving [1], [2]. At the same time,
manually designed rule-based systems find it challenging to
adapt to complex driving environments. As a very successful
method in the field of sequential decision problems [3], [4],
reinforcement learning (RL) has become a highly promising
learning paradigm for autonomous driving, especially in
decision-making and control tasks [5-7]. However, the pop-
ular RL paradigm that directly generates short-term control
commands (such as steering angle and acceleration) results
in future motion characterized by large uncertainties, which
results in deficiencies in the smoothness and stability of
driving behavior [8]. This is also one of the reasons hindering
its large-scale practical applications.

On one hand, when RL agent outputs are short-term
control commands, the RL policy network typically fits the
probability distribution of control commands under different
observed state inputs. In this context, the output commands
are easy to change frequently with the time step [9], [10]. On
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other hand, due to the lack of explicit long-term action plan-
ning, the RL agent insufficiently considers the feasibility of
future motion, and the future trajectory of the vehicle is still
unknown [10]. Hence, the real-time RL control commands
are prone to sudden changes in dynamic environments.

In lane-change scenarios with structured roads, the goal
of lateral motion is usually explicit and remains unchanged
for a long time, which is suitable to be represented by
discrete semantic behaviors in long horizon [11]. Therefore,
some studies have designed discrete path sets based on the
discrete lane-change semantic behaviors, enabling the RL
agent to directly choose from them [11-13]. The lane-change
trajectory generated by these methods is finite, however,
a long-term lane-change goal can be achieved through an
infinite number of feasible trajectories. Thus, these trajec-
tory selection methods restrict the maneuverability of the
vehicle’s motion. Some researchers attempted to enable RL
agent to generate continuously variable target points with
discrete semantic behaviors for trajectory planning [14], [15].
It promotes both the stability and maneuverability of lane-
change driving behavior to some extent through the trajectory
planner. Nevertheless, the longitudinal speed control is also
planned by the rule-based planner according to the target
points, which still loses some flexibility of the RL agent.
Additionally, these methods often directly discretize continu-
ous output actions to generate the discrete semantic behavior,
which may lose the advantages of continuous action space
for fine-grained control [16].

To this end, this paper simultaneously considers the long-
term discrete lane-change behavior goal and short-term
real-time vehicle motion control. Based on Parameterized
Trajectory Actions, a hierarchical Reinforcement Learning
method with a hybrid action output is designed to enhance
the stability of driving behavior in lane-change scenarios
while keeping the flexibility, thereby improving the driving
efficiency and safety. The proposed method is called RL-
PTA and the contributions of this paper are summarized as:
• Proposes a stability enhanced hierarchical reinforcement

learning framework to achieve smooth and flexible
driving behavior in dynamic traffic environments;

• Enables the RL agent to participate in path generation
with the parameterized trajectory action and thus to
adapt to various scenes;

• Realizes hybrid action output based on parameterized
action space. It can synchronously generate lane-change
trajectory targets over the long horizon and real-time
acceleration control commands over the short horizon,
hence the discrete and continuous actions have optimal
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consistency.
The remainder of this paper is organized as follows:

Section II presents the system framework of the proposed
RL-PTA for lane-change maneuvers. In Section III, we
introduce the details of the methodology. The analysis of
the experiment results based on the simulation environment
and the real traffic dataset is presented in Section IV. The
conclusion of the paper is in Section V.

II. SYSTEM FRAMEWORK

A. Preliminary
The RL agent learns the driving policy by interacting with

the environment through exploitation and exploration with
the trial-and-error paradigm [17]. The sequential decision
and control problem can be formed as a Markov Decision
Process (MDP) represented by < S,A,P,R,γ > [13], where
S is the state space, A is the action space, P is the transition
probability, R is the reward function, and γ is the discount
factor. RL agent selects an action at ∈ A at each time step t
according to the current state st ∈ S. It receives a numerical
reward Rt+1 and transitions to a new state st+1. The sequence
{s0,a0,R1,s1,a1,R2, ...} is called a rollout [18]. The policy
π(a|s) is defined as the probability of selecting action a at
state s. The cumulative discounted reward starting from time-
step t is defined as Gt =∑ j≥t γ j−tR(s j,a j). Hence, the action-
value function of policy π can be defined as the following:

Qπ(st ,at) = E [Gt |st = s,at = a ] . (1)

The goal of RL agent is to find the optimal policy that
maximizes the expected reward. This optimal action-value
function can be described by the Bellman equation,

Q(st ,at) = E
[

Rt + γmax
a′∈A

Q(st+1,a′)|st = s,at = a
]
. (2)

B. MDP with Parameterized Action Space
To represent the MDP in a trajectory parameterized action

space, the action needs to be defined within a hierarchical
architecture. Firstly, the high-level discrete action k is se-
lected from a set of discrete actions K. After that, the low-
level parameter action xk ∈ Xk is chosen corresponding to
k. Here, Xk represents a continuous set for ∀k ∈ K. The
low-level continuous parameter is optional, and different
discrete actions can share common low-level parameters [19].
Therefore, the discrete-continuous hybrid action space can be
expressed as,

A = {(k,xk) | xk ∈ Xk,∀k ∈ K} . (3)

For ∀a ∈ A, s ∈ S, the action-value function Q(s,a) =
Q(s,k,xk). Let kt represent the discrete action at time t and
let xkt be the associated continuous parameter. Then Eq. (2)
can be rewritten as,

Q(st ,kt ,xkt ) =

E
Rt ,st+1

[
Rt + γ max

k∈K
sup

xk∈Xk

Q(st+1,k,xk)|st = s,at = (kt ,xkt )

]
.

(4)

The deep neural network (DNN) Q(s,k,xk;ω) is employed
to approximate Q(s,k,xk), where ω represents the network

Fig. 1. The overall framework of proposed RL-PTA. The o∗ is a temporary
parameter until final o is selected, representing all possible discrete actions.

parameters. Additionally, a deterministic policy network
µ(s;θ) is utilized to approximate the determination of xk,
where θ denotes the parameters for the policy network.
Taking the extremes in the continuous space Xk is compu-
tationally intractable. However, when the value function is
given, xk is a function of state s for any state s and the high-
level action k. On this basis, the network can be utilized to
solve the problem of taking extremes in a continuous space.
Further, it can be understood as the process of exploring θ

when ω is given:

Q(s,k,µ(s;θ);ω)≈ sup
xk∈Xk

Q(s,k,xk;ω),∀k ∈ K. (5)

This paper uses the high-level trajectory objective o ∈ O
to describe the lateral lane-change long-term behaviors in
the structured roads, where O is a set of feasible discrete se-
mantic behaviors. The o represents the overall driving intent,
preliminarily guaranteeing safety and flexibility. Meanwhile,
the low-level trajectory objective and acceleration command
are denoted by continuous actions (do,ao) ∈ (Do,Ao), where
(Do,Ao) are two continuous action sets for ∀o ∈ O. Specif-
ically, do and ao have a higher correlation with the specific
future state of the vehicle, which further ensures flexibil-
ity and safety while improving the smoothness of vehicle
motion. Thus, the optimal action-value function for the lane-
change task can be expressed as,

Q(st ,ot ,(dot ,aot )) =

E
Rt ,st+1

[
Rt + γ max

o∈O
{ sup

Do,Ao

Q(st+1,o,(do,ao))}|st = s

]
.

(6)

The parameterized action space enables discrete and con-
tinuous actions to be optimized within a unified framework
to achieve higher value functions, where the optimization
principle of both actions are consistent. The high-level action
can be effectively achieved through the low-level action,
while the low-level action can be flexibly adjusted to adapt
to the changes in the high-level action, and ultimately, which
makes the hybrid action have optimal consistency.

C. Overall Framework of RL-PTA
Fig. 1 illustrates the overall system framework of the

proposed RL-PTA. The observation information of the ego-
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Fig. 2. Orientation of six SVs in relation to EV.

vehicle (EV) and surrounding vehicles (SV) from the envi-
ronment is processed and input into deep neural networks
which have parameterized action outputs. By the hybrid
hierarchical RL network including value network and policy
network, high-level discrete semantic action o and low-
level continuous action (do,ao) are simultaneously obtained,
providing the acceleration command and the objective of
generating a feasible lateral path. Through a designed track-
ing controller, the steering angle δe and acceleration ae
could be implemented to EV. The driving experiences in
the memory batch are used to update the RL network with
different time scales according to Eq. (6).

III. METHODOLOGY

A. RL Agent Formulation

1) State Space Definition: The state space is vectorized
by constructing the information vector se of the EV and ss

of the SV.
For se, it can be expressed as:

se = [IDlane,dlat ,vlat ,vlon,alat ,alon] , (7)

where IDlane denotes the current lane id of EV, and dlat
denotes the lateral distance of EV with respect to the
current lane. Meanwhile, vlat /vlon and alat /alon are the lat-
eral/longitudinal velocity and acceleration, respectively.

Considering six SVs around EV, the illustration of their
position relative to EV is shown in Fig. 2. For ss, it can be
expressed as:

ss =
[
∆dlati ,∆dloni ,∆vlati ,∆vloni ,∆alati ,∆aloni

]
, (8)

where i = 1 ∼ 6, dlat and dlon respectively denote the
lateral and longitudinal distances of the SV with respect
to EV. Further, ∆vlat /∆vlon and ∆alat /∆alon denote the lat-
eral/longitudinal velocity and acceleration of the SV relative
to EV. Thus, the total state vector can be represented as
s = (se,ss).

2) Parameterized Action-Space: The parameterized action
space is a hybrid space containing the discrete high-level
lane-change objective as well as the continuous low-level
path target and acceleration command. It thereby provides
a motion planning foundation for implementing complex
decisions. Thus, the action space can be specified as:

A = {o,(do,ao) | (do,ao) ∈ (Ao,Do),∀o ∈ O}. (9)

where o is the discrete high-level lane-change objective
selected from O = {LCL : 1,LK : 0,LCR :−1}, which means
lane change left, lane keeping, and lane change right. The
do ∈Do is the continuous low-level path target, which serves

as a parameter for constructing the target path, and Do varies
according to the EV’s current speed and vehicle kinematic
model:

Do ∼
[

min
(√

4R0lc− l2
c ,

v2
lon

2a−max

)
,ekv·|vlon|+lc

]
, (10)

where R0 represents the minimum turning radius of the ve-
hicle, lc denotes the lane width, a−max signifies the maximum
braking acceleration of the vehicle, and speed weight kv = 1.
The ao ∈ Ao is the EV’s acceleration command, and Ao is a
continuous set of [−3m/s2,3m/s2].

3) Reward Design: The design of the reward dictates
the driving strategy adopted by the EV. Consequently, the
reward function primarily includes efficiency reward Re,
safety reward Rs, and smoothness reward Rc:

R = Re +Rs +Rc. (11)

For the efficiency reward Re, it receives a higher positive
reward when EV’s speed is closer to the target speed vt .
Meanwhile, a negative reward for too low speed is also
necessary to prevent extremely slow driving or even stopping.
Therefore, Re can be expressed by the following equation:

Re = ke1 ·
|v− vt |

vt
− ke2 ·max(0,

vl− v
vl

), (12)

where vl is the low-speed threshold for the negative reward,
and ke1 and ke2 are weights for the two efficiency sub-
rewards, set to ke1 = ke2 = 1.

To ensure the safety reward Rs, it is crucial to prevent
collisions between the EV and SVs, assigning a significant
negative reward when a collision occurs. Additionally, a
positive reward associated with the Time-to-Collision (TTC)
is introduced. Thus, Rs can be denoted by the following
equation:

Rs =−ks1 fcoll + ks2 · sat[0,1]

(
∆t

tmax

)
, (13)

where fcoll is a flag bit of collision, which is set to 1 when
a collision occurs or EV is off the road, otherwise to 0. The
TTC of EV and its front vehicle is represented by ∆t, and
tmax is the upper limit for evaluating the TTC. The weights
ks1 and ks2 are set to ks1 = 10, and ks2 = 0.5.

For the smoothness reward Rc, the EV should be encour-
aged to maintain moderate the steering angle δe and the ac-
celeration ae while driving. Therefore, Rc can be denoted by:

Rc =−kc1 ·
|δe|
|δmax|

− kc2 ·
|ae|
|amax|

, (14)

where δmax and amax represent the maximum steering angle
and the maximum acceleration that the EV can safely handle
on the road. The weights kc1 and kc2 are set to kc1 = kc2 = 0.5.

B. Path Generation and Tracking
Considering path continuity and computational efficiency,

we employ a fifth-degree polynomial curve for path genera-
tion based on the parameters (o,do), which is represented by:

y j =
5

∑
j=0

c jx j. (15)
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Fig. 3. An example of lane-change for EV.

As shown in Fig. 3, the EV’s position state in the road
coordinate system is (x,y,θe,κe), where θe is the yaw angle
and κe is the curvature. Consequently, (x0,y0,θe,0,κe,0) =
(0,0,θe,0,κe,0) denotes the initial position state of EV, while
(xt ,yt ,θe,t ,κe,t) = (do,o · lc,0,0) denotes the position state of
the target path point. According to the discrete high-level
lane-change objective o and continuous low-level path target
do provided by the RL-agent, coefficients of the fifth degree
polynomial path for EV can be calculated by the previous
work [13]. It fully capitalizes on the high flexibility of the RL
agent to generate future motion paths that adapt to dynamic
scenes.

C. Network Design

For parameterized action space A defined in Eq. (9),
discrete and continuous actions are respectively selected from
the action-value networks Q(s,o,(do,ao);ω) and the policy
network µ(s;θ). Thus, Eq. (6) is written as following form:

Q(st ,ot ,(dot ,aot )) =

E
Rt ,st+1

[
Rt + γ max

o∈O
Q(st+1,o,µ(st+1;θ);ω)

]
.

(16)

For the parameter ω , it is estimated by minimizing
the mean square Bellman error through gradient descent.
Additionally, constructing the target action-value network
Q′(s,o,(do,ao);ω ′) and the target policy network µ ′(s;θ ′),
where ω ′ and θ ′ are progressively closer to ω and θ based
on soft update technique. Specifically, at step t, the target yt
can be defined as:

yt = Rt + γ max
o∈O

Q′
(
st+1,o,µ ′

(
st+1;θ

′) ;ω
′) . (17)

Based on Eq. (16) and Eq. (17), the loss function lt for updat-
ing the Q-network and the µ-network can be expressed as:

lQ
t (ω) =

1
2
[yt −Q(st ,ot ,(dot ,aot );ω)]2, (18)

lµ

t (θ) =−∑
o∈O

Q(st ,o,µ (st ;θ) ;ω). (19)

Furthermore, the gradient during network update can be
represented as follows:

∇lQ
t (ω) = [Q(st ,ot ,(dot ,aot ;ω)− yt)]∇ω Q, (20)

∇lµ

t (θ) =−∑
o∈O

∇θ µ (st ;θ)∇µ(st ;θ)Q(st ,o,µ (st ;θ)). (21)

In the ideal case, the learning goal is to minimize lµ

t (θ)
with a given ωt . It is worth noting that the Q-network
of high-level long-term lane-change objective should be

updated on a long-time scale, while the µ-network of low-
level continuous action requires a short-time scale. Therefore,
online approximation using a two-time scale update rule is
employed in this work. The step size αt for updating ω is
asymptotically negligible compared to the step size βt for
updating θ . The training process of the proposed RL-PTA is
explicitly introduced in Alg. 1.

Algorithm 1 Training process of proposed RL-PTA
Input: Step sizes {αt ,βt} ,total training steps N, exploration

parameter ε , learning rate lr, soft-update parameter τ .
1: Initialize: experience memory batch D, networks
{Q,µ,Q′,µ ′} with random parameters {ω,θ ,ω ′,θ ′}.

2: for t = 0 to N do
3: Get state st from environment.
4: Select (dot ,aot ) = µ(st ;θ) .

5: Select ot =

{
random choice, with ε

maxo∈OQ(st ,o,(dot ,aot )),with 1− ε

6: Create motion path by ot and dot .
7: Get δt based on path, together with aot to control EV.
8: Get st+1 and Rt from environment.
9: Store transition {st ,(ot ,dot ,aot ),Rt ,st+1)} into D.

10: Sample randomly from D to compute lQ
t (ω), lµ

t (θ).
11: Update ωt+1← ωt −αt∇ω lQ

t (ω).
12: Update θt+1← θt −βt∇θ lµ

t (θ).
13: ω ′t+1← τωt +(1− τ)ω

′
t , θ ′t+1← τθt +(1− τ)θ

′
t .

14: st ← st+1.
15: if st is terminal then
16: Reset environment.
17: end if
18: end for
19: return

IV. EXPERIMENT RESULTS ANALYSIS

A. Implementation Setting
1) Simulation Environment Setup: For the training and

testing of all methods, we constructed typical structured
road simulation scenarios using the TAD Sim 2.0 platform.
The three-lane scenario is created where EV is randomly
generated in the center line of one lane. SVs are also
randomly generated, and their longitudinal and lateral driving
behaviors use the IDM/MOBIL model [20], [21]. The desired
speed of EV is set slightly higher than the average speed of
SVs to encourage lane changes. Additionally, SVs execute
their maneuvers with a PID controller and some of them
might change lanes at the proper time to get closer to the
desired speed. The simulation step size is set to 0.2s.

Meanwhile, we introduce the concept of traffic capacity
to accurately describe the distribution of vehicles, typically
denoted by V/C [22]. The V/C ratio for all simulated
scenarios in this paper is set to 0.5, indicating a moderately
congested traffic environment.

2) Algorithm Parameters Setup: To ensure the fairness in
training and testing, all algorithms share the same hyperpa-
rameters, as shown in Table I. In addition, the ADAM [23]
algorithm is also used to optimize the network to improve
computationally efficient.
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TABLE I
SHARED HYPER-PARAMETERS

Item Value
Number of hidden layers 3

Hidden layer size 256
Activation function Leaky ReLU
Discount factor γ 0.9

Learning rate for value and policy 1e-4
soft-update parameter τ 0.005

Replay buffer size 40000
Sample batch size 256

Number of steps for training N 150000
Number of episodes for testing 200

Maximum number of steps per episode 100

3) Dataset for Validation: To justify the superiority of
our method in real scenarios, this paper presents a validation
based on the HighD dataset [24], which is a large-scale nat-
ural vehicle trajectory dataset from German highways. The
dataset contains all the information necessary for validation,
such as the lateral and longitudinal positions of each vehicle,
speed, acceleration, lane position, and so on. Specifically, we
select cars with lane-change behavior as EVs and let their
behavior be controlled by the DRL agent. For the SVs, they
still follow the established trajectory. Meanwhile, to match
with the training process, the speeds of all SVs are scaled
to below 20 m/s. And the maximum time for each episode
during validation is 40s.

B. Compared Methods
To analyze the effectiveness and sophistication of our

method, we select DQN, SAC with continuous action
(SAC con), and SAC with hybrid action (SAC hybrid) as
baseline methods to compare training and test results with
the proposed RL-PTA. To ensure fair comparisons, all four
methods are tested under identical simulation environment
settings and the same random seed.

1) DQN: It outputs both lateral and longitudinal high-
level semantic behavior actions. Then, a PID controller
generates the steering angle and acceleration to control the
EV’s motion.

2) SAC con: The policy network outputs the steering
angle and acceleration to directly control the EV.

3) SAC hybrid: It has the same action outputs {o,xo,ao}
as the RL-PTA and is able to generate motion trajectory. The
difference is that this baseline directly discretizes part of its
continuous output to obtain o.

C. Simulation Results Analysis
All methods are trained for 150,000 time steps with

varying episode sizes, and all of them converge to the
optimal driving strategy after 1300 episodes. Fig. 4 shows the
evolution of total reward, average speed and episode length
for each episode in training process. DQN and SAC hybrid
agents eventually learn similar average driving speeds, but
the latter can better avoid collisions to get longer episode
length and reward. DQN has limited attention on safety,
resulting in the poorest performance in total reward and
episode length. For SAC con, the random exploration of con-
tinuous control commands often leads to off-road excursions

Fig. 4. Training results of each method.

Fig. 5. Distribution of some key indicators while testing in the simulation
environment.

Fig. 6. Distribution comparison of speed and acceleration while testing in
the simulation environment.

in early training process, which contribute very short episode
length and low reward. And SAC con eventually learns a
very conservative behavior, which is reflected in its very low
average speed. Obviously, the proposed RL-PTA achieves
higher reward and faster convergence than other methods,
as shown in Fig. 4(a). More importantly, the RL-PTA agent
quickly learns flexible driving behaviors from experience,
leading to improvements in both average speed and episode
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TABLE II
KEY INDICATORS OF TEST RESULTS IN THE SIMULATION ENVIRONMENT

method average reward average speed episode length lane-change times collision rate steering variance acc variance

DQN 0.880 10.9 89.5 10.22 0.40% 0.0026 0.728
SAC con 0.887 7.3 98.9 2.09 0.01% 0.0031 1.159

SAC hybrid 0.923 11.1 91.4 7.36 0.11% 0.0015 0.344
RL-PTA 0.948 12.1 95.2 8.21 0.04% 0.0009 0.278

length. Therefore, our method demonstrably learns higher-
quality driving behavior, enhancing both flexibility and sta-
bility.

After training process, we test each method with 200
episodes. The distributions of some key indicators, which
reflect the details of driving behavior, are shown in Fig. 5.
From Fig. 5(a), it can be seen that RL-PTA is still able to
obtain higher reward. In Fig. 5(b), the average speed per
episode of RL-PTA is generally higher, which effectively
ensures the driving efficiency of EV. Fig. 5(c) and Fig. 5(d)
show the distributions of the steering variance and accel-
eration variance, respectively, where RL-PTA maintains the
lowest values for both, demonstrating its ability to enhance
the stability of driving behavior.

The more quantitative details of the key indicators for the
four methods are shown in Table II. Besides, Fig. 6 shows the
joint distribution of velocity and acceleration, comparing RL-
PTA with each baseline method separately. It can be found
that RL-PTA achieves the best performance in almost all
metrics, while SAC hybrid is second to it. This proves that
the parameterized action space can effectively improve the
driving performance for RL agent. Specifically, comparing to
SAC hybrid, RL-PTA increases the average reward by 2.7%.
Additionally, it also increases the average speed and the num-
ber of lane-change times per episode by 9.0% and 11.5%,
respectively, while the collision rate drops by 63.6%. These
results suggest that RL-PTA can driving more effectively
and safely, making more lane changes when necessary while
minimizing the risk of collisions. Furthermore, RL-PTA
exhibits respectively 40.0% and 19.2% lower steering and ac-
celeration variance, compared to SAC hybrid, indicating its
superior ability to maintain lateral and longitudinal stability
during driving. In Fig. 6(c), the joint distribution of speed and
acceleration for RL-PTA is concentrated towards the lower
right, indicating its ability to achieve higher speeds with
smaller acceleration fluctuations. These results demonstrate
the superiority of the parameterized action space for handling
hybrid actions compared to directly discretizing partially
continuous actions.

It is worth pointing out that DQN has the maximum
number of lane-change times, but its collision rate is much
higher than other methods. This implies that utilizing only
the DRL agent to output high-level behavior goals will limit
flexibility and make driving strategy more aggressive, hence
more dangerous. In contrast, allowing the DRL agent to be
more directly involved in EV’s control, such as RL-PTA, can
significantly ameliorate this problem and improve flexibility.
For SAC con, it always tends to choose a more conservative

Fig. 7. Distribution of some key indicators while validating with HighD
dataset.

Fig. 8. Distribution comparison of speed and acceleration while validating
with HighD dataset.

driving strategy to maximize long-term reward, which results
in having the lowest collision rate but at the cost of signifi-
cant sacrifice of efficiency. As shown in Fig. 6(b), SAC con
also has high acceleration variance and steering variance,
indicating that it maintains unstable maneuvers even the
speed is low. In contrast, RL-PTA’s parameterized trajectory
action enables both flexible and stable driving, effectively
balancing efficiency and safety.

D. Validation in HighD Dataset

To further validate the effectiveness of RL-PTA, all meth-
ods are tested in HighD dataset and Fig. 7. shows the
distribution of several key indicators. Obviously, RL-PTA
still maintains the highest speed and reward, while achieving
the lowest steering variance and acceleration variance. It
demonstrates the effectiveness of our method in real traffic
scenarios, which can enhance the driving efficiency as well
as the stability the of driving behavior. As shown in Table III,
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TABLE III
KEY INDICATORS OF VALIDATION RESULTS WITH HIGHD DATASET

method average reward average speed episode length lane-change times collision rate steering variance acc variance

DQN 0.914 13.1 87.2 7.99 0.80% 0.0021 0.340
SAC con 0.904 9.5 99.7 1.69 0.00% 0.0037 0.737

SAC hybrid 0.958 14.3 91.8 5.54 0.11% 0.0012 0.292
RL-PTA 0.965 14.9 95.0 6.32 0.05% 0.0006 0.235

the collision rate of RL-PTA remains nearly unchanged
compared to that in Table II, and it is still lower than that
of DQN and SAC hybrid. This demonstrates the robustness
of our method in adapting to different lane-change scenes
and ensuring vehicle safety. Further, Fig. 8(c) shows that
RL-PTA still maintains superior acceleration control in the
HighD dataset, further highlighting the effectiveness of the
parameterized trajectory action.

E. Discussion
In summary, the training and testing results highlight

the superiority of our RL-PTA over the other three base-
line methods. Additionally, we validated the effectiveness
of RL-PTA using the HighD dataset. The parameterized
trajectory action enables more flexible and smoother lane-
change behavior, enhancing the efficiency and safety of
EV’s motion. Moreover, the experimental results demonstrate
that the parameterized action space significantly improves
the stability of hybrid action output compared to directly
discretizing partially continuous actions.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a hierarchical reinforcement
learning method based on parameterized trajectory action
(RL-PTA), generating both long-term feasible driving paths
and short-term real-time control commands simultaneously.
The parameterized action space is instrumental in ensuring
optimal consistency between the discrete and continuous
components of the hybrid actions, leading to enhanced the
stability of driving behaviors. Experimental results demon-
strate that RL-PTA enables autonomous vehicle to perform
more flexible and smoother lane changes, improving both
driving efficiency and safety in structured road scenarios.
Future work will focus on further enhancing safety while
maintaining the efficiency of vehicle operation, and will also
explore the applicability of RL-PTA in more complex traffic
scenarios.

REFERENCES

[1] H. Deng, Y. Zhao, Q. Wang and A.T. Nguyen, ”Deep Reinforcement
Learning Based Decision-Making Strategy of Autonomous Vehicle in
Highway Uncertain Driving Environments,” Automot. Innov. vol.6, pp.
438-452, 2023.

[2] Z. Li, J. Hu, B. Leng, L. Xiong and Z. Fu, “An Integrated of Decision
Making and Motion Planning Framework for Enhanced Oscillation-Free
Capability,” IEEE Trans. Intell. Transp. Syst., early access, 2023, doi:
10.1109/TITS.2023.3332655.

[3] V. Mnih et al., “Human-level Control Through Deep Reinforcement
Learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[4] N. Brown and T. Sandholm. “Superhuman AI for Heads-up No-limit
Poker: Libratus Beats Top Professionals,” Science, vol. 359, no. 6374,
pp. 418– 424, 2018.

[5] B. R. Kiran, I. Sobh, V. Talpaert, et al, “Deep Reinforcement Learning
for Autonomous Driving: A Survey,” IEEE Trans. Intell. Transp. Syst.,
vol. 23, no. 6, pp. 4909–4926, Jun. 2022.

[6] L. Chen et al., ”Milestones in Autonomous Driving and Intelligent
Vehicles: Survey of Surveys,” IEEE Trans. Intell. Vehicles, vol. 8, no.
2, pp. 1046-1056, Feb. 2023.

[7] X. He and C. Lv, ”Towards Safe Autonomous Driving: Decision Making
with Observation-Robust Reinforcement Learning,” Automot. Innov.
vol.6, pp. 509-520, 2023.

[8] S. R. Jaladi, Z. Chen, N. R. Malayanur, R. M. Macherla and B. Li,
”End-To-End Training and Testing Gamification Framework to Learn
Human Highway Driving,” in Proc. IEEE Intell. Transp. Syst. Conf.
(ITSC), pp. 4296-4301, 2022.

[9] X. Tang, B. Huang, T. Liu and X. Lin, ”Highway Decision-Making and
Motion Planning for Autonomous Driving via Soft Actor-Critic,” IEEE
Trans. Veh. Tech., vol. 71, no. 5, pp. 4706-4717, May. 2022.

[10] Q. Liu, X. Li, S. Yuan and Z. Li, ”Decision-Making Technology
for Autonomous Vehicles: Learning-Based Methods, Applications and
Future Outlook,” in Proc. IEEE Intell. Transp. Syst. Conf. (ITSC), pp.
30-37, 2021.

[11] C. -J. Hoel, K. Wolff and L. Laine, ”Automated Speed and Lane
Change Decision Making using Deep Reinforcement Learning,” in
Proc. IEEE Intell. Transp. Syst. Conf. (ITSC), pp. 2148-2155, 2018.

[12] K. B. Naveed, Z. Qiao and J. M. Dolan, ”Trajectory Planning for
Autonomous Vehicles Using Hierarchical Reinforcement Learning,” in
Proc. IEEE Intell. Transp. Syst. Conf. (ITSC), pp. 601-606, 2021.

[13] Z. Li, L. Xiong, B. Leng, P. Xu and Z. Fu, “Safe Reinforcement Learn-
ing of Lane Change Decision Making with Risk-Fused Constraint,” in
Proc. IEEE Intell. Transp. Syst. Conf. (ITSC), pp. 1313-1319, 2023.

[14] X. Lu, F.X. Fan and T. Wang, ”Action and Trajectory Planning for Ur-
ban Autonomous Driving with Hierarchical Reinforcement Learning.”
arXiv preprint, arXiv: 2306.15968, 2023.

[15] Z. Gu et al., “Safe-State Enhancement Method for Autonomous
Driving via Direct Hierarchical Reinforcement Learning,” IEEE Trans.
Intell. Transp. Syst., vol. 24, no. 9, pp. 9966-9983, Sep. 2023.

[16] Z. Fan, R. Su, W. Zhang and Y. Yu, ”Hybrid Actor-Critic Rein-
forcement Learning in Parameterized Action Space,” arXiv preprint,
arXiv:1903.01344, 2019.

[17] S. B. Thrun, ”Efficient Exploration in Reinforcement Learning,”
Carnegie Mellon University, 1992.

[18] Z. Zhu and H. Zhao, ”A Survey of Deep Rl and Il for Autonomous
Driving Policy Learning,” IEEE Trans. Intell. Transp. Syst., vol. 23, no.
9, pp. 14043-14065, 2021.

[19] Xiong, Jiechao, et al. ”Parametrized deep q-networks learning: Rein-
forcement learning with discrete-continuous hybrid action space.” arXiv
preprint, arXiv:1810.06394, 2018.

[20] M. Treiber, A.Hennecke and D. Helbing, ”Congested Traffic States in
Empirical Observations and Microscopic Simulations,” Physical review
E, vol. 62, no. 2, 1805, 2000.

[21] A. Kesting, T. Martin and H. Dirk, ”General Lane-changing mMdel
MOBIL for Car-Following Models,” Transportation Research Record,
vol. 1999, no.1, pp. 86-94, 2007.

[22] R. Baldacci, P. Toth, and D. Vigo, ”Exact Algorithms for Routing
Problems Under Vehicle Capacity Constraints,” Annals of Operations
Research, vol. 175, pp. 213-245, 2010.

[23] Diederik P Kingma and Jimmy Ba, ”Adam: A Method for Stochastic
Optimization,” arXiv preprint arXiv:1412.6980, 2014.

[24] Robert Krajewski, Julian Bock, Laurent Kloeker, and Lutz Eckstein,
”The Highd Dataset: A Drone Dataset of Naturalistic Vehicle Trajecto-
ries on German Highways for Validation of Highly Automated Driving
Systems,” IEEE Trans. Intell. Transp. Syst., pp. 2118–2125, 2018.

3026

Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on March 24,2025 at 05:21:54 UTC from IEEE Xplore.  Restrictions apply. 


