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Risk-Aware Reinforcement Learning for
Autonomous Driving: Improving Safety When
Driving through Intersection

Bo Leng, Ran Yu, Wei Han, Lu Xiong, Zhuoren Li and Hailong Huang

Abstract—Applying reinforcement learning to autonomous
driving has garnered widespread attention. However, classical
reinforcement learning methods optimize policies by maximizing
expected rewards but lack sufficient safety considerations, often
putting agents in hazardous situations. This paper proposes
a risk-aware reinforcement learning approach for autonomous
driving to improve the safety performance when crossing the
intersection. Safe critics are constructed to evaluate driving risk
and work in conjunction with the reward critic to update the
actor. Based on this, a Lagrangian relaxation method and cyclic
gradient iteration are combined to project actions into a feasible
safe region. Furthermore, a Multi-hop and Multi-layer perception
(MLP) mixed Attention Mechanism (MMAM) is incorporated
into the actor-critic network, enabling the policy to adapt to
dynamic traffic and overcome permutation sensitivity challenges.
This allows the policy to focus more effectively on surrounding
potential risks while enhancing the identification of passing
opportunities. Simulation tests are conducted on different tasks
at unsignalized intersections. The results show that the proposed
approach effectively reduces collision rates and improves crossing
efficiency in comparison to baseline algorithms. Additionally, our
ablation experiments demonstrate the benefits of incorporating
risk-awareness and MMAM into RL.

Index Terms—autonomous vehicles, reinforcement learning,
safety, intersection.

I. INTRODUCTION

As one of the most challenging autonomous driving (AD)
tasks, navigating through intersection brings inevitable inter-
actions that require a comprehensive consideration of safety,
efficiency, timing, and other factors. Traditional rule-based
approaches prone to overly conservative or inconsistent driving
strategies in this complex condition, making it difficult to pass
through safely and efficiently [1]].

Recent advancements in reinforcement learning (RL) have
highlighted its potential to surpass human driving capabilities,
owing to its superior handling of high-dimensional state spaces
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and adaptability to complex scenarios [2]. RL technologies
have been extensively explored in various scenarios, including
highway, merging, intersection, etc. [3], [4]. RL optimizes
policies by maximizing expected rewards. However, classic
RL agent may exhibit unsafe behaviors due to a lack of safety
consideration. For safety-critical driving tasks, it’s essential
to not only maximize rewards but also to incorporate safety
guarantees to prevent accidents [5]. Consequently, the effective
application of RL while ensuring safety has become an urgent
challenge for promoting AD.

To address this issue, Safe RL is introduced to ensuring
compliance with safety constraints while maximizing rewards.
Some approaches enhance safety by introducing safety factors
or risk measures into the objective or reward function [6], [7].
The essence of this category is to modify the policy gradient to
update the policy in the direction of the feasible region, thus
improving the safety of agent [8]. While they can enhance
safety to some extent, their safety performance significantly
deteriorates when confronted with intricate scenarios, resulting
in a higher incidence of constraint violations. Other approaches
identify unsafe actions during the agent’s exploration phase
and project them onto a safe set, thereby ensuring fewer or
even zero constraint violations during training [9]], [10]. While
these methods offer better state-wise safety, they typically re-
quire accurate system dynamics or other prior knowledge [5]],
[L1], or are designed for specific applications with constraints
of a particular form [12[], [13]].

In unsignalized intersection scenarios, autonomous vehi-
cles (AVs) encounter traffic from multiple directions, cre-
ating potential conflict risks. To represent the surrounding
environment, existing studies typically concatenate the AV’s
state with environmental information into a feature vector and
implement policy mapping through a multi-layer perception
(MLP) [14], [15]. However, these methods face two major
challenges: dimension sensitivity, where traditional MLPs rely
on fixed-dimensional feature vector inputs, making it difficult
to adapt to the dynamic number of traffic participants, and
permutation sensitivity, where irregular traffic flows lead to
abrupt changes in interacting objects and spatial relationships
between adjacent time steps, further complicating state char-
acterization and decision-making [16]. Some approaches use
grid maps [17] or bird’s eye view (BEV) [18] to represent
environmental features and address these issues. Nevertheless,
the discretization of grid divisions and downsampling in image
encoding can result in the loss of fine-grained information.
In [16], an encoding sum and concatenation (ESC) method



is proposed, where an MLP maps each surrounding vehicle
(SV) to an feature vector, and they are added element-wise
to form the surrounding state representation. However, equal-
weight summation struggles to filter out information that
is strongly correlated with the ego vehicle (EV). Attention
mechanism has been widely used in RL policy construction
to capture relationships between features, thereby improving
the policy’s ability to understand environmental information
[19], [20], [21]. Inspired by the transformer architecture [22],
we incorporate the attention mechanism into the network to
effectively handle dynamic traffic flow.

The inability to handle the dynamic changes in the number
and permutation of surroundings traffic participants may make
it difficult for AVs to identify potential risks and adopt unsafe
strategies. Moreover, the complex information at these inter-
sections requires the AV to identify pivotal data to ascertain the
timing of passage. To improve safety and efficiency for driving
through intersection, a risk-aware RL approach is proposed
in this paper and the main contributions are summarized as
follows:

o Safe critics are constructed to evaluate driving risk and
work in conjunction with the reward critic to update the
actor. A Lagrangian relaxation method is incorporated to
generate approximate safe actions, which are projected
into a feasible safe region with safety iterative correction
by cyclic gradient descent.

o A Multi-hop and Multi-layer perception mixed Attention
Mechanism (MMAM) integrated into the actor-critic
network enables the policy to adapt to dynamic traffic
and overcome permutation sensitivity challenges, enhanc-
ing scene understanding and improving decision-making
timing when navigating intersections.

o The proposed approach is evaluated through comparative
experiments, as well as ablation studies, demonstrating
its effectiveness in terms of safety and efficiency.

II. RELATED WORKS
A. Safe RL Methods

Algorithms based on Safe RL aim to constrain risks within
a given threshold or to avert constraint violations. Many
approaches use the Lagrange multipliers to transform the
constrained optimization problem into an unconstrained one
[23], [24]], or utilize the trust region approach, which ensures
policy feasibility and stability by constructing an approximate
objective at each iteration and restricting the update range
[25]], [26]. These methods addresses constraints implicitly, but
it can only ensure limited safety and is still prone to severe
constraint violations in complex scenarios. Another notable
branch ensures the safety during training by preventing the
agent from exploring risky behaviors. Some algorithms lever-
age control theory by constraining the agent to a designated
feasible region. Zhang et al. [9] and Cheng et al. [10] integrate
RL with Lyapunov functions and Control Barrier Functions
(CBF), respectively, to ensure that state trajectories remain
within a safe feasible region. However, these algorithms often
require manual specification of safety constraint functions,
and accurately determining these functions can be challenging.

Dalal et al. [12] introduce a safety layer that directly modifies
the output actions, linearly mapping the original policy to
a safe set to ensure safety. However, methods based on
linearization assumptions may not accurately represent system
dynamics and can lead to approximation errors.

B. Safe RL Methods for Autonomous Driving

In safety-critical tasks such as autonomous driving, ensuring
safety is essential to prevent catastrophic accidents. Some
algorithms enhance safety by incorporating additional safety
constraint objectives. For instance, Li et al. [27] evaluate driv-
ing risks using probabilistic models that account for position
uncertainty and distance-based safety metrics. Similar initia-
tives have introduced risk assessment and trade-offs within
DRL [28], [29]. While the above methods can improve secu-
rity, it is challenging to avoid the decline in safety performance
caused by constraint violations. Krasowski et al. [[11] propose
a framework based on vehicle trajectory prediction, which
incorporates a safety layer to mask unsafe actions. Similarly,
Chen et al. [19] develop a lightweight safety layer designed
to identify and eliminate unsafe actions in advance. Wang
et al. [30] modify the actions during exploration to obtain
approximate safe actions and used them to train safe strategies.
Moreover, some algorithms employ reachability analysis to
assess the safety of vehicle trajectories. Notably, Wang et al.
[31] introduce an online reachability analysis algorithm that
calculates the occupancy of both the vehicle and surrounding
trajectories, ensuring the safety of the vehicle’s path.

III. PRELIMINARIES
A. Constrained Markov Decision Process

In this paper, Safe RL is modeled as a Constrained Markov
Decision Process (CMDP), which extends the standard MDP
to a heptuple (S, A,P,R,C,p,v). S and A are denoted as
state space and action space respectively. P : S x A x § —
[0,1] is the transition probability function, which represents
the system dynamic. R : S x A — R is the reward function.
C : Sx A [0, +00] maps the state action transition tuple into
a cost value and reflects the constraint violation. p : S — [0, 1]
is the initial state distribution and ~ is the discount factor
for future reward and cost. Policy 7 : & — P(A) is a
map from given states to a probability distribution over action
space. In standard MDP, the goal is to optimize the policy by
maximizing the agent’s cumulative discounted reward:

jR (7T) = ]ETNTr

Zv’fmst,at)] : (1

t=0

where, 7 = [sg,a0,81, -], and T ~  stands for the
stochastic trajectory distribution depended on sg ~ p,a; ~
w(-|st), st41 ~ P(:|st,ar). CMDP is required to optimize
the agent’s rewards while guaranteeing that the agent satisfies
safety constraints. Hence, CMDP can be formulated as the
following constrained optimization problem:

max Jr(m), s.t.Jo(m) < b, (2)

wellg
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Fig. 1. Diagram of feasible region Spr and unfeasible region Sy g.

where, IIg is the set of policies m, b € R is the constraint
threshold. The goal of CMDP is to find a feasible policy set
satisfying the cost constraints, i.e., [Ic = {7 € g | Jo(7) <
b}. Similar to the definition of Q™ (s,a) in standard RL, safe
critic Q7 (s,a) = Erur [Dopo; ¥ier] < b represents the cost-
return over a certain time horizon.

B. Safety Correction

The objective is to find the feasible policy that satisfies the
safety constraint dip,.s by defining a safe critic Q™ (s, a) as
state-wise constraints:

S.t.Q‘g(S, Cl) < dth'res- (3)

As shown in Figll] the feasible region Spgr: Q7 (s,a) <
dinres 18 defined, and any state s; within the feasible region
Srr satisfies:

7 = argmax [Q" (s, a)]

Vs eSFR,StJ,—j, ESFR,Vi€N+. 4)

Similarly, unfeasible region Syg is defined as the region
where Q7(s,a) > dipres, and the whole state space Sa; =
Sur|JSrr. When the ego vehicle is in Sy and continues
to execute its current policy, there is a significant probability
of a collision occurring. To circumvent the aforementioned
issue, a natural idea would be to correct the original unsafe
actions a,;q towards the feasible region while attempting to
minimize the discrepancy between the new and old actions to
the greatest extent possible:

aoldH
s.t. QZ(S,G) S d/thres- (5)

arg min ||apew —

C. Dimension Sensitivity and Permutation Sensitivity

1) Dimension Sensitivity: For the observation set S, it
typically contains EV-related information Sz € R %5V and
SV-related information Sgy € RNsv*dsv where dgy,dsy
denote the feature dimension of EV and SVs respectively,
and Ngy € [1,N] N N is the number of observed SVs,
which changes dynamically with the traffic flow. That is,
S = [Spv, Ssv]. Since architectures such as MLP typically
require fixed input dimensions, many works use a fixed
dimension feature vector, i.e., by specifying a potentially

observed number of SVs, Mgy . However, if Mgy < Ngvy,
the additional vehicles will not be observable, leading to
information loss; conversely, when Mgy > Ngy, it results
in information redundancy.

2) Permutation Sensitivity: For the driving policy 7w, we
expect it to be permutation-invariant. That is, for any two
possible permutations (; and (o of the surrounding traffic
participants, the policy 7 should output the same decision,
namely:

(- |(SEV,S<1(1) )
7([(Spv, S, . SENN)) V1, G € By,

Conversely, if there exist two permutations (; and (o that
make the output of the policy inconsistent, this is called
permutation sensitivity:

7((Spv, S, SH)
£ (1o SHY - SEN) 3o € Sy

L SHT) ©

)

IV. METHODOLOGIES

Directly correcting an unsafe action to a safe one is quite
challenging. Hundreds of iterations may be required to project
an unsafe action into Sgr. Moreover, if the initial action is
far from Sppr, multiple iterations may still result in the action
remaining in Sy . Therefore, we use a Lagrangian relaxation
approach to obtain approximate safe action a;,,;¢. Then, Safety
Iterative Correction is applied to a;,;: to obtain a feasible safe
solution aney When Q7 (S, ainit) > dinres-

The overall framework is depicted in Fig. [2, which includes
two pairs of reward critics Qf 5 and target critics Q‘f; as well
as two pairs of safe critics Q¢ ., and target safe critics QCl I
all of which contribute to actor’s my policy updates and action
risk evaluation. The pseudo-code is shown in Algorithm [I]

A. Approximate Safe Action Generation

The initial solution a;y;; is derived through the construction
of a Lagrangian function for constrained policy optimization:

max min £(0, \)
AS0 6
Q%(st,ar) (8)

= max{mm Es,~D,a,~me [Oé log mg(as | s¢) —

A>0
+A(R6LU(Q? (Sta at) - dthres))} }7

where A is the Lagrange multiplier, @ is the temperature
parameter that dictates the relative significance of the entropy
term compared to the reward and logmy(-) is entropy of
policy mg. By employing a dual ascent strategy, the algorithm
alternately updates the policy and the Lagrange multipliers,
thereby gradually converging to the saddle point of the mini-
max problem:

A A+ aVaL(0, )\),

01— agVeL(6,)\), 9

where ay, g are the step sizes for the parameters A, 6 respec-
tively. Lagrange multiplier functions operate analogously to
penalty coefficients, enabling the policy to gradually converge
within the constraints.
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A dual-critic is employed in both reward critic and safe
critic, to mitigate positive bias during the policy improve-
ment step to address the overestimation issue. The larger
Q7 (s,a) = max;—1 2 Q7 ;(s,a) is selected to reduce the risk
of underestimation. Although it may lead to an overestimation
of the Q7 (s, a), it effectively increases the safety margin for
overall reliability. Therefore, reward critic network @ and
safe critic network Q¥ can be updated by as follows:

s @0 Gna) — (rsnad 2V i)}

with V¥ (s¢41)

j:ilr12 QY ;(st41,ai41) — alog m(agr1|sey1),

‘Cr (wz)

(10)

L) = £ { Q% san) - (elsa) + 9V (s020) )
with ‘/011)7 (St+1) = m

j= ng(st-‘rha't-i-l)a

ax
1,2
1D
The temperature parameter can be adjusted adaptively. As
the policy becomes more definitive in the later stages of train-
ing, the exploration capability can be appropriately reduced.
Specifically, the update of the temperature parameter is guided
by the following optimization objective:
‘C(a) = ]E(st,at)w,o7r [70& logw(at | St) - aHO]a (12)
where p, is the state distribution under policy 7 and Hj is
the target entropy.

B. Safety Iterative Correction

Based on @, we refine the initial solution to ensure safety
using the following soft loss function:

1
»Csoft(ak) = 5”0116 - ainit||2

+ A (RGLU(QC(S, (lk) - dthres))v

13)
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Fig. 3. Multi-hop and MLP-mixed Attention Mechanism (MMAM).

where k denotes the k-th iteration and A, represents the
coefficient of the constraint. The corresponding gradient for
k-th action ay, is:

Vi, Lsofe(ar) = ar — Qinit
8(R6LU(QC(57 ak) - dthres))
8ak '

(14)
+ >\a

Ultimately, the gradient descent method is utilized to update
the action ay:

41 = A — %kvakﬁsoft(ak)a

15)
where hyper-parameter 7 determines the update magnitude for
each iteration and N IV a, Lsott (ar)||oo s the scaling
factor normalize the gradients on aj. aj is expected to
converge to the optimal action aj as k — oo. Due to time
constraints, a more practical approach is to set a maximum
iteration limit N;y,.. If this limit is reached without satisfying
the constraints, the iteration will be terminated.



Algorithm 1 Risk-Aware Soft Actor-Critic

Initialize: parameters wi, w2, 1,2, 0, A\; Wy < wi,w, < wo,
i 4+ 1,15 < o, replay buffer D <+ (; learning rate
Qpy ey g, QN Ba.

1: for each episode e do

2 for each time-step t do

3 Get state s; and select action: a: ~ w(a¢|st).
4: Get safe critic value:

5: Qﬁ} (St, at) = maxX;=1,2 in(st, at).

6: if Q¥ (st,at) > dinres then

7 for each iteration £k = 1 — Niter do

8 ap < a — %kvakﬁsoﬁ(ak}.

9: if QY (st,ar) < dinres then

10: Break.

11: Execute a., receive next state s¢41, reward r; and
12: cost c¢. Store the transition (s¢, at, Tt, Ct, St+1) in
13: replay buffer D.

14: for each training epoch ¢ do

15: Sample N transitions from replay buffer D.

16: Update the critic network and safe critic network:
17: wj < wj — Vi, Ly (wj), forj € {1,2},

18: Vj 4= by — eV, Le(1);), forj € {1,2}.

19: Update actor network and Lagrange multiplier:
20: (7] <—6—aﬁV9£(9,)\), A — )\-i-a)\V)\,C(Q, )\)
21: Update temperature parameter:
22: a <+ a— BaVaLl(a).
23: Soft update the target network w;, ¥, .

C. Attention embedded Actor-Critic Network

To tackle the dimension and permutation sensitivity,
MMAM is incorporated into the actor-critic network, as shown
in Fig. [3] which enhances the extraction of scene information
and improves the scene comprehension capabilities of EV,
allowing them to focus on potential risks more effectively.

With regard to the detailed architecture of the policy net-
work, Spy € R 95V and Sgy € RNsv*dsv are processed
through their respective fully connected embedding layers,
then concatenated and mapped to the latent input matrix
Z1 € RN%2 where d represents the hidden size of networks,
N is the total number of vehicles. Then, Z; can be further
transformed into query, key, and value matrices Qs, Ksg,
Vs € RNX4 respectively, using a linear transformation
operator 7 € R*? Multi-head attention is subsequently
employed to focus on different parts of the Z; and the outputs
of each head are then merged and transformed back to their
original dimensions, as shown below:

MultiHead(Q, K, V) = Concat(heady, ..., head, )W
where head; = Attention(QWlQ, KWEX vwY)
KT
Vd
(16)

where parameter matrices WZQ,WZK , WY € Rdxd/h and
WO ¢ R4 Subsequently, the output Z} is augmented
with a residual connection, sliced, into and then linearly
transformed to form the query Qg € R'*? for ego-attention,
in order to capture the interaction between EV and SVs. Ego-
attention is a variant of self-attention wherein the query Q
solely contains EV’s features. This configuration establishes

Attention(Q, K, V) = softmax(

)V,

| J
- - ‘ = = ‘
u
= e e—
f ‘ firi ‘g‘
(a) (b) ©

Fig. 4. Driving tasks and main conflicts at unsignalized intersection. (a)
LT task, EV primarily encounters conflicts with oncoming traffic and some
crossing traffic. (b) GS task with mixed traffic flow. (c) RT task with crossing
traffic, EV needs to perform a right merge.

a 2-hop attention structure in conjunction with self-attention,
facilitating the iterative integration and extraction of additional
feature information through the sequential processing of the
query and the latent matrix [32]. The parameters of the
embedding and attention layers are independent of IN, allowing
the models to adapt to dynamic input. Meanwhile, since the
final result is the dot product of values and key similarities,
the model is permutation invariant.

The value network incorporates the EV’s actions as input.
The input feature matrix Zy € RIV+2)%4 s processed through
both the ego-attention branch and the MLP branch, thereby
enabling the model to capture relationships between the EV
and SVs, as well as global information about states and
environment. Let Y attn, Ymip € R1xd represent the outputs of
the attention and MLP branches, respectively. A weighted sum
of these outputs is computed using learnable weight vectors
Wattn, Wlp € R4, yielding the final Q-value:

Q(Sv CL) - Yattn : Wattn + lep : Wmlp~ (17)

V. IMPLEMENTATION

A. Environment Settings

We constructed a bidirectional four-lane intersection sce-
nario based on Highway-Env [33] and designed three driving
tasks: left-turn (LT), go-straight (GS), and right-turn (RT). As
graphed in Fig. |4} to avoid sparse traffic flow caused by the
random generation of SVs, which would simplify the task to
a path-following problem, we specially design the difficulty
of the driving task. To reduce collisions from random SV
generation, we applied an improved intelligent driver model
(IDM) [34]] strategy that follows traffic rules. Each SV predicts
its heading and position for the next 2 seconds, yielding
to potentially colliding vehicles based on established road
priorities. Each time the scenario is reset, 10 SV will be
initialized and generated. The initial velocity of each SV is
randomly generated within the range of [6 m/s, 10 m/s]. The
minimum distance between vehicles is 15 m, and vehicles that
do not meet this requirement will be removed. The EV is
initialized with a random velocity and positioned in a lane
where no collisions will occur at that moment. The simulation
frequency fs is 15 Hz, with the policy execution frequency
fr set to 5 Hz during training and 10 Hz during testing. The
maximum length of each episode is 125 time steps (25s).
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B. CMDPs Design

1) observation space and action space: The observation
space is constituted by two components: EV’s states Spy
and SVs’s states Sgy, namely: S = [SEV,SéV,...,SéV§V],
where Sgpy = []Iveh’x»y’v$”Uy»(bvw’dveh’ddes]» Sév =
Lyen.Az,Ay,Avg,Avy, ¢]. The Ngy vehicles situated in
the closest proximity to EV are selected, with the distance
measured from 70 m in front of the EV to 30 m behind
it. In the Highway-Env simulator, the fixed-dimensional
constraint of the observation space inherently contradicts
the dynamic nature of traffic scenarios. To address this
limitation, we construct an observation tensor with a constant
dimension by predefining a maximum number of SVs
Mgy > Ngy € [1,N] N N, ensuring that observation
redundancy is always present. Additionally, an indicator
function I, € {0,1} is used to indicate whether a vehicle
is actually observed (I,., = 1) or is a redundant vehicle
(Iyer, = 0). To mitigate the impact of redundant features on
the network, we apply masks to both the feature and attention
layers: redundant parts of the feature vector are zero-padded,
and when computing the attention weights, a large negative
bias (-1€9) is applied to the QK similarity of the redundant
vehicles. This takes advantage of the exponential decay
property of the softmax function, causing the normalized
weight to approach zero. Az, Ay, Av,, Av, represent the
position and velocity of the SVs relative to the EV. ¢ and
w is the heading angel and yaw rate of vehicle, respectively.
As illustrated in Fig. 5l dges = mini—12(dl, + d!) is the
shortest Manhattan distance from EV to the target points.
dyer, = dmin — TEV — Tsv 1S the shortest distance from the
EV to SVs, where d,,;, represents the minimum distance
among the four inter-center distances computed between the
circular, rper, = /(lyen/4)% + (Wyen/2)%,veh € [EV,SV],
lyen and wype are the length and width of the vehicle. We
directly control the vehicle’s front wheel steering angle ¢y
and longitudinal acceleration a,, so the continuous action can
be expressed as @ = [ag, d7].

2) reward function: Our reward function is comprised pri-
marily of sparse rg,q,s. and dense rewards rgeys.. The sparse
rewards, which are used to penalize collisions and encourage

reaching the target points, are illustrated as follows:

Tsparse = Tcollision + Tarrive_goals
Teollision = -30 - Hcollisiona (18)
Tarrive_goal = 100 - Harrive“qoal-
To determine the dense reward function, we consider factors
such as reference line information, action smoothness, the
distance to destination and safety distance:

r ense:7+rsmoo —|—I‘ es+H Tsafe,
d T+1re th + Tq RSTsaf
rrep = max(x; —x) Q(x} —x),
Tact = _(a;rRuat + RAAat)a
: i i 19
Cies = —dies = ~[min(d; + dy))?, (19
0.0 if dyen, > 0.5,
Tsafe = —(1.0 — d'ueh) if 0.2 < dyep, < 0.5,
—3 X (1.0 — dveh) if dyen, < 0.2.
where xi¢f = [zref yrel pref 0 @¢ret 0]T. In order to guar-

antee safety, vehicles should adhere to a speed limit of
30 or 40 km/h when approaching and traversing intersec-
tions. Consequently, v;ef is set at 9 m/s. For r,.s, calculate
both reference lines simultaneously and select the maximum
value to encourage the EV to stay close to the reference
line. r,.; is employed to encourage the EV to save energy
and smooth the trajectory. The weight coefficient matrix or
vector Q = diag(400.0,400.0,20.0,20.0,2.0,0.5), R, =
diag(0.05,0.02), Ra = [0.10,0.10]. req . is used exclusively
in the baseline algorithm based on reward shaping, i.e., when
I rs = 1.

3) cost function: To evaluate the existing risk of collision
and facilitate the autonomous vehicles’ capacity to proac-
tively anticipate potential collision threats, we proposes a cost
function based on vehicle trajectory prediction. The predicted
positions and headings {X,Y, ®} gy sy derived from vehicle
dynamic model Fgy and kinematic model Fsy (Sec.
employed in the calculation of the vehicle’s corner points
VEv,sv. The separating axis theorem (SAT) is then employed
to detect collisions [35]]. Considering that the uncertainty of
trajectory predictions increases with distance, vehicle expan-
sion coefficient 5 € [1.20,1.50] is introduced to enlarge the
vehicle’s rectangular bounding box. The process of the cost
function is illustrated in Algorithm 2.

C. Vehicle Model

We use a kinematic model to describe the motion of SVs,
while employing a more precise dynamic model to simulate
the motion of the EV. Due to the singularity of conventional
dynamic models at low speed, we introduce a discrete dynamic
bicycle model inspired by the backward Eulerian method that
is feasible at any low speed (i.e., less than 15 m/s) [36]. This
model has been demonstrated to be numerically stable and to
have lower prediction errors compared to kinematic models.
The transition model of EV and SVs are depicted as follows:

Xi11 = Fpv (X, W), x) = Fsv(x}),  (20a)



x + Ts(vg cos ¢ — vy sin @)
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0 .
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where the EV’s feature vector x; = [:c,y,vw,vy,¢7cq]T,
control vector u; = [ag,&f]", SV’s feature vector x] is
(2,9, Vs, vy, @] T, 2,y are the position coordinates of the vehi-
cle’s center of gravity, v;,v, are the longitudinal and lateral
velocities, ¢ is the heading angle, w is the yaw rate. Ly, L,
are the front and rear wheelbases, respectively. Cy, C,. are the
front and rear axle equivalent sideslip stiffness, respectively.
m is the mass of vehicle, I, is the inertia of vehicle’s center
of gravity. j € [1, Ngy], where Ngy represents the total
number of SVs. Sampling time 7 = ﬁ The future states
of SVs are predicted under constant velocity and yaw rate.
Considering actuator saturation, we restrict continuous actions
to a, € [—5.0,5.0lm/s? and &7 € [0.6, 0.6]rad, respectively.

Algorithm 2 Cost function with trajectory prediction

Initialize: EV’s velocity vy, vehicle expansion coefficient 3,
prediction horizon T, initial cost value C;,,;:, base velocity
Viase, Weight coefficient w.

1: Get the predicted positions and headings of EV and SVs:
2: {X7Y,¢}EV (—va,{X,Y,‘I)}SV «— Fsvy.

3: for each SV j =1 — Ngy do

4 for each time-step i =1 — T do

5: Get the corner points of EV and SV:

6: Vey < polygon({zi, yi, ¢i} ev, B),

7: Vsv < polygon({zi,yi, ¢i}sv, B),

8 Collision detection based on SAT(Vgyv, Vsv).

9: if have collision then

10: Cy + C; + Cipit - =2 - e~ wh

Vbase
11: Return:C;/Ngy

D. Comparison Baselines and Metrics

We compare Attention embedded and Risk-aware Soft Actor
Critic (ARSAC) to the following baselines: SAC-RS [37],
PPO-RS [38]], which incorporate an auxiliary reward rg, e
compared to standard SAC and PPO; SAC-Lag [23] and CPO
[25]. The implementation of SAC-Lag and CPO are based
on Omnisafe [39]. For algorithms that do not use MMAM,
the hidden layers of their policy and value networks are
unified to three. The detailed hyper-parameters of the above
algorithm and the one we propose are listed in Table |l with
recommended values used for hyper-parameters not specified
in the tables below.

TABLE I
HYPER-PARAMETERS

Algorithm  Hyper-parameter Value
Network hidden size 256
Activation function GELU
Shared Actor learning rate o, 3e-4—1e-5
(Safe) Critic learning rate o, . 3e-3—le-4
Discount factor ~y 0.99
safety threshold dipres 0.05
Temperature factor 7 0.005
Buffer size le5
SAC-RS Batch size 256
Alpha learning rate o 3e-4
Target entropy H -dim(.A)
Initial Lagrangian multiplier 1.0
SAC-Lag Lagrangian multiplier learning rate vy le-4
GAE parameter Aga g 0.95
Clip parameter 0.20
PPO-RS Batch size 4096
Mini-batch size 256
Activation function TANH
CPO Conjugate gradients iterations 15
maximum iteration N;¢e- 50
ARSAC Update step-size n 0.02
Attention heads 4

For each algorithm, five training runs with different random
seeds are conducted, each spanning 10,000 episodes in ran-
domly generated intersection scenarios featuring three driving
tasks. Subsequently, each algorithm is tested with 500 episodes
for LT, RT, and GS driving tasks. To evaluate the performance
of EV in these intersection scenarios, this study designed the
following metrics:

(a) Collision rate (CR): As the cost function devised with
safety as a primary consideration, this study employs the mean
collision rate as a statistical metric. Within an episode, if EV
collides with other vehicles or exceeds the traversable area of
the road, it is considered a collision.

(b) Success rate (SR): If EV safely reaches the target point
without any collisions, it is considered a success.

(c) Frozen rate (FR): If EV neither collides nor reaches the
target point within a limited time (25s), it is considered to be
"frozen’. This phenomenon is typically observed in instances
where EV is operating under overly conservative strategies,
which can have a detrimental impact on the overall efficiency
of traffic flow. The frozen rate can be calculated by:

FR=1-CR-SR. 21

(d) Average episode cumulative reward (AER): reflects
the performance of each algorithm.

(e) Average episode velocity (AEV): reflects the average
speed of the EV when navigating through intersections and its
impact on traffic efficiency.

E. Results Analysis

1) Comparison experiment: The learning curves compared
with baseline algorithms such as SAC-RS, PPO-RS, SAC-
Lag and CPO are shown in Fig. [6] and test results are in
Table [lI} Results indicate that the proposed ARSAC algorithm
outperforms or matches all other baseline algorithms across
three driving tasks in terms of the final performance. For



TABLE II
COMPARE PERFORMANCE ON THREE DRIVING TASKS.

Tasks | Algorithms | CR(%) SR(%) FR(%) AER AEV(m/s)
CPO 38.4+10.8 61.6+10.8 0.0+£0.0 -91.2+483 14.124+0.82

PPO-RS | 31.4£6.6 68.6+£6.6 0.0+0.0 -78.34383 13.56+0.48

LT SAC-RS 17.6+£5.1 80.8+5.1 1.64+03 -49.4430.1 12.69+0.55
SAC-Lag | 174445 804+44 2241.1 -37.1£324 12.1640.49
ARSAC 28+1.7 958+1.3 1.4+£05 46.32+199 8.51£0.76

CPO 20.8+£8.1  79.2+8.1 0.0+0.0 41.32+31.6 8.82+1.62

PPO-RS 144460 85.6+6.0 0.0£0.0 54.80+£359 7.82+0.32

GS SAC-RS 12.8+£3.0 86.2+3.1 1.04£0.6 46.53+23.9 7.5440.88
SAC-Lag | 11.6+44 872440 1.2+0.8 48.42+30.1 8.01£0.46
ARSAC 1.6+1.0 98.4+1.0 0.0+0.0 76.62+17.4 8.23+0.28

CPO 18.6+7.1 81.0+7.1 0440.1 41.5+372 9.10+0.86

PPO-RS 16.8+5.7 82.4+56 0.8+0.1 585+358 8.3240.47

RT SAC-RS 10.6+3.7 87.843.7 1.6£0.6 52.1£26.5 8.46£0.55
SAC-Lag 8.8+£2.8 89.6£2.8 1.6+0.3 499+22.6 7.68+£1.13
ARSAC 04+03 99.6+03 0.0£0.0 90.4+12.4 827+0.35

CPO 259+8.8 73.9+8.8 0.140.0 -2.8+41.2 10.68+1.02

PPO-RS | 20.9+62 7894+6.1 0.3£0.0 11.67£36.9 9.90+0.39

MEAN | SAC-RS 13.744.2 849+40 14£04 1643+27.1 9.5640.68
SAC-Lag | 12.6+4.1 857442 1.7£0.7 20.41£24.8 9.28+0.89
ARSAC 1.6+0.9 97.9+0.9 05401 71.13£16.8 8.3710.45

! Bold: best performance; Underline: undesirable high values.
2 Policy update frequency fr = 10 Hz.

instance, in the RT task, ARSAC achieves 18.2%, 16.4%,
10.2%, and 8.4% lower CR compared to CPO, PPO-RS, SAC-
RS, and SAC-Lag respectively, while demonstrating superior
performance in AER with significantly lower variance. In the
LT task, SAC-RS, PPO-RS, SAC-Lag and CPO demonstrate
higher velocity, yet their AER are negative and significantly
lower than that of ARSAC. In this scenario, EV needs to adopt
a competitive strategy to efficiently identify suitable gaps in
fast-moving traffic. Due to insufficient understanding of the
scenario, SAC-RS, PPO-RS, SAC-Lag and CPO struggle to
achieve higher rewards, resulting in mostly negative outcomes.
To maximize cumulative rewards, these algorithms tend to
adopt higher driving speeds to avoid accumulating negative
rewards in future timesteps, leading to higher AEV and
undesirable behaviors such as failure to reach the destination.
Although CPO and PPO-RS achieve or surpass ARSAC’s
performance in FR in both the LT and GS tasks, they lack
safety and perform worse than ARSAC in terms of AER.
Additionally, in Table [, we present the mean statistics that
evaluate the average performance of each method across
three testing conditions. We find that ARSAC outperforms or
matches the baselines across the three tasks and demonstrates
exceptional performance in the more challenging unprotected
left-turn scenario.

2) Ablation studies: We additionally perform an ablation
study to compare the effects of the safety module and the struc-
ture of MMAM on algorithm performance. As shown in Table
RSAC is a variant of ARSAC that excludes the MMAM,
while ASAC is a version of ARSAC that omits the risk-
aware component. Compared to SAC, RSAC demonstrates a
lower collision rate across three driving tasks. Although RSAC
encounters performance degradation in LT task due to limited
scene comprehension. Safety iterative correction mitigates
collisions by projecting risky actions back towards the feasible
region Spp through cyclic gradient descent, guided by safe
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critics’ evaluations. The collision rates in LT/GS/RT task are
reduced by 2.0%, 3.0%, and 3.2% for ARSAC compared to
ASAC, while the collision rates are reduced by 10.4%, 3.8%,
and 3.8% in comparison to RSAC, respectively. These results
indicate that better scene understanding allows the safe critic
to more accurately assess risky actions. Consequently, the safe
actions corrected by gradient projection are more likely to fall
within Spp, thereby enhancing overall safety. As illustrated
in Fig. [7} after training convergence,the frozen rate of RSAC
exhibits fluctuations around 1%, while ARSAC exhibits a
notable decline in its frozen rate. Furthermore, as indicated
in Table [T} the AEV of RSAC is 1.7% and 6.5% lower than
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TABLE III
ABLATION STUDY ON THREE DRIVING TASKS.

Tasks | Algorithms | CR(%) SR(%)  FR(%) AER AEV(m/s)
SAC 204454 792453 0440.0 -42244312 12.2840.69
LT RSAC | 132448 84.244.6 2.64+0.3 -34.28427.8 10.9640.56
ASAC 48412 952412 0.040.0 41.43+£249 8.6340.68
ARSAC | 2.84+1.7 958+1.3 14405 46324199 851+0.76
SAC 14.64£59 832455 22404 51.02434.3 7.95+0.46
Gs RSAC 54416 932412 14403 66.74429.1 7.6940.37
ASAC 46409 954409 0.04+0.0 69.42+23.6 8.42+0.33
ARSAC | 1.6£1.0 98.44+1.0 0.0+0.0 76.62+17.4 82340.28
SAC 12.6+4.8 85.644.8 1.840.3 58.59+31.7 7.8440.46
RT RSAC 42414 946413 1240.1 76.84+£242 8.1340.33
ASAC 3.640.7 96.440.7 0.04+0.0 86.85+£132 8.5040.61
ARSAC | 04403 99.6+0.3 0.0+£0.0 90.4+12.4 827+0.35
SAC 152452 833451 1.5+£0.3 22464322 9.36+0.52
MEAN | RSAC 7.64£33 90.7£3.1 1.7£0.5 36434252 8.934041
ASAC 4340.8 95.740.8 0.04£0.0 6590£19.2 8.5240.49
ARSAC | 1.6£0.9 97.9+£0.9 0.5+0.1 71.134+16.8 8.37+0.45

! Bold: best performance; Underline: undesirable high values.
2 Policy update frequency fr = 10 Hz.

that of ARSAC in RT and GS tasks, respectively. In contrast,
ASAC achieves AEV that are 2.8% and 2.3% higher than those
of ARSAC. These findings illustrate that MMAM effectively
captures the relationship between EV and SVs, filtering out
non-conflicting vehicles and other disruptive factors, thereby
enhancing overall traffic efficiency.

FE. Driving Behavior Analysis

We apply the trained policies of the compared baselines
and our proposed algorithm, ARSAC, to three driving tasks
and visualize the trajectories of both EVs and SVs. The basic
environment settings are consistent with those described in
Sec. [V-Al

1) Left-turn Case: As illustrated in Fig. [8] ARSAC, SAC-
Lag, SAC-RS and CPO are able to pass through the scene
without collisions, while PPO-RS encounters a collision. AR-
SAC exhibits similar driving behaviour to a human driver

when faced with oncoming traffic in parallel lanes. When
approaching an intersection, ARSAC first slows down and
then performs a pre-steer maneuver to the right, allowing
the vehicle to turn left more fluidly and safely. During the
turn, it decelerates appropriately to find an optimal moment
to pass through, and once the oncoming traffic is cleared,
it accelerates again to improve traffic flow. Throughout the
turn, the ego’s trajectory follows a smooth arc. In contrast, the
trajectory of SAC-RS is not smooth, and although SAC-Lag
also exhibits a tendency to pre-steer rightward, its trajectory
is similarly not smooth. Due to its high-speed performance,
CPO maneuvers left to avoid oncoming vehicles. However,
in comparison to ARSAC, its trajectory deviates from the
reference line. It can be seen that ARSAC enables the vehicle
to effectively perceive its surroundings, thereby enhancing
safety and providing improved opportunities for better passage.

2) Go-straight Case: In the GS task, the EV encounters the
challenge of traffic coming from all directions. If the EV fails
to respond expeditiously to potential risks in its surroundings,
the likelihood of a collision occurring is increased. As shown
in Fig. Although SAC-RS attempts to avoid collisions
with oncoming lateral traffic by reducing speed, the utiliza-
tion of ry,r. as an auxiliary reward alone is inadequate to
ensure collision avoidance. In this case, CPO made significant
accelerations and decelerations to avoid a collision. Although
it successfully navigated through the intersection, its trajectory
was less smooth compared to ARSAC, and the larger speed
fluctuations could result in a decrease in comfort. Fig. [0()]
demonstrates that the velocity changes of ARSAC, SAC-Lag,
and PPO-RS are characterized by a relatively gentle slope.
Nevertheless, due to its limited scene understanding, SAC-
Lag is compelled to execute preemptive steering maneuvers to
avoid collisions with oncoming lateral traffic, causing the EV’s
trajectory to shift left. In contrast, ARSAC effectively seizes
the opportunity to pass through, making minimal adjustments
to avoid collisions while maintaining a smooth trajectory.
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3) Right-turn Case: In the RT case, all algorithms except
SAC-Lag are able to produce safe, collision-free, and smooth
trajectories, as depicted in Fig. [I0] Fig. [T0(f)] illustrates that
SAC-Lag attempts to merge into the traffic by reducing its
speed. However, due to its inability to accurately gauge the op-
timal timing for merging, it adopts an overly cautious approach
to avoid collisions, which ultimately reduces traffic efficiency.
CPO enters the intersection at a speed of approximately 15
m/s. To avoid a collision, it rapidly decelerates to 10 m/s
within about 0.7 seconds, then gradually reduces speed after
1.3 seconds to complete the merging maneuver. In contrast,
ARSAC maintains a consistently stable speed throughout,
highlighting its ability to accurately assess the optimal timing
for merging while ensuring safety.

VI. CONCLUSION

In this paper, we propose a risk-aware reinforcement learn-
ing algorithm to ensure that autonomous vehicles can safely

and efficiently traverse intersection scenarios. Safe critics are
designed to assess driving risks and work in conjunction with
the reward critic to update the actor. Building on this, a
Lagrangian relaxation method and cyclic gradient iteration
are employed to project actions into a feasible safe region.
Furthermore, a multi-hop, MLP-mixed attention mechanism is
integrated into the actor-critic network, enabling the policy to
adapt to dynamic traffic and overcome permutation sensitivity
challenges, thereby allowing it to more effectively focus on
surrounding potential risks while enhancing the identification
of passing opportunities. Experimental results for left-turn,
right-turn, and go straight driving tasks demonstrate that our
algorithm effectively reduces collision rates and improves the
efficiency of EV compared to baseline algorithms. Nonethe-
less, it is well known that autonomous vehicles share the
road with various traffic participants, such as cyclists and
pedestrians in the real-world environment. Therefore, our
future work will extend to mixed traffic flows. In addition,



we will use more accurate time series forecasting models and
integrate predictive features to better assess risk. We also plan
to use offline datasets for training and testing, while extending
the approach to a wider range of scenarios.
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